A long-term, phase 2, multicenter, randomized, open-label, comparative safety study of pomaglumetad methionil (LY2140023 monohydrate) versus atypical antipsychotic standard of care in patients with schizophrenia

BMC Psychiatry (Impact Factor: 2.21). 05/2013; 13(1):143. DOI: 10.1186/1471-244X-13-143
Source: PubMed


We compared the time to discontinuation due to lack of tolerability over 24 weeks in patients suffering from schizophrenia treated with pomaglumetad methionil (LY2140023 monohydrate, the prodrug of metabotropic glutamate 2/3 receptor agonist, LY404039) or standard of care (SOC: olanzapine, risperidone, or aripiprazole).
Study HBBR was a multicenter, randomized, open-label study comparing the long-term safety and tolerability of LY2140023 with SOC for schizophrenia. Patients had moderate symptomatology with prominent negative symptoms and evidence of functional impairment. Those who met entry criteria were randomized to open-label treatment with either LY2140023 (target dose: 40 mg twice daily [BID]; n = 130) or SOC (n = 131).
There was no statistically significant difference between LY2140023 and SOC for time to discontinuation due to lack of tolerability (primary objective; P = .184). The Kaplan-Meier estimates revealed comparable time to event profiles. Only 27% of LY2140023 and 45% of SOC patients completed the 24-week open-label, active treatment phase. Twenty-seven patients (20.8%) in the LY2140023 group and 15 patients (11.5%) in the SOC group discontinued due to lack of efficacy (P = .044). Twenty-three patients (17.7%) in the LY2140023 group and 19 patients (14.5%) in the SOC group discontinued due to adverse events (physician and subject decision combined, P = .505). The incidence of serious adverse events was comparable between groups. LY2140023-treated patients reported significantly more treatment-emergent adverse events of vomiting, agitation, and dyspepsia, while SOC-treated patients reported significantly more akathisia and weight gain. The incidence of treatment-emergent parkinsonism (P = .011) and akathisia (P = .029) was significantly greater in SOC group. Improvement in PANSS total score over the initial 6 to 8 weeks of treatment was similar between groups, but improvement was significantly greater in the SOC group at 24-week endpoint (P = .004). LY2140023 and SOC groups had comparable negative symptom improvement at 24-week endpoint (P = .444).
These data provide further evidence that the potential antipsychotic LY2140023 monohydrate, with a glutamatergic mechanism of action, may have a unique tolerability profile characterized by a low association with some adverse events such as extrapyramidal symptoms and weight gain that may characterize currently available dopaminergic antipsychotics.
Trials registration
A Long-term, Phase 2, Multicenter, Randomized, Open-label, Comparative Safety Study of LY2140023 Versus Atypical Antipsychotic Standard of Care in Patients with DSM-IV-TR Schizophrenia
ClinicalTrials.gov identifier: NCT00845026.

Download full-text


Available from: Bruce J. Kinon, Dec 19, 2014
  • Source
    • "In contrast the two clinical antipsychotic drugs resulted in sustained decreases in ongoing γ activity. mGluR 2/3 receptor agonists have been shown in clinical trials to have a lower cognitive side effect profile (Adams et al., 2013). It is possible that the lack of effect of LY379268 on the "
    [Show abstract] [Hide abstract]
    ABSTRACT: Noncompetitive N-methyl-d-aspartate receptor (NMDAr) antagonists can elicit many of the symptoms observed in schizophrenia in healthy humans, and induce a behavioural phenotype in animals relevant to psychosis. These compounds also elevate the power and synchrony of gamma (γ) frequency (30-80 Hz) neural oscillations. Acute doses of antipsychotic medications have been shown to reduce ongoing γ power and to inhibit NMDAr antagonist-mediated psychosis-like behaviour in rodents. This study aimed to investigate how a chronic antipsychotic dosing regimen affects ongoing cortical γ oscillations, and the electrophysiological and behavioural responses induced by the NMDAr antagonist ketamine. Male Wistar rats were chronically treated with haloperidol (0.25 mg/kg/d), clozapine (5 mg/kg/d), LY379268 (0.3 mg/kg/d) or vehicle for 28 d, delivered by subcutaneous (s.c.) osmotic pumps. Weekly electrocorticogram (ECoG) recordings were acquired. On day 26, ketamine (5 mg/kg, s.c.) was administered, and ECoG and locomotor activity were simultaneously measured. These results were compared with data generated previously following acute treatment with these antipsychotics. Sustained and significant decreases in ongoing γ power were observed during chronic administration of haloperidol (64%) or clozapine (43%), but not of LY379268 (2% increase), compared with vehicle. Acute ketamine injection concurrently increased γ power and locomotor activity in vehicle-treated rats, and these effects were attenuated in rats chronically treated with all three antipsychotics. The ability of haloperidol or clozapine to inhibit ketamine-induced elevation in γ power was not observed following acute administration of these drugs. These results indicate that modulation of γ power may be a useful biomarker of chronic antipsychotic efficacy.
    The International Journal of Neuropsychopharmacology 06/2014; 17(11):1-10. DOI:10.1017/S1461145714000959 · 4.01 Impact Factor
  • Source
    • "In a following phase 2 dose ranging trial, all of the four investigated dosing groups did not differ from placebo (140), which was also the case for a phase 2 trial comparing pomaglumetad methionil to olanzapine and a placebo group. In this trial, both active treatment groups did not separate regarding efficacy and safety parameters from the placebo group (141). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is characterized by positive, negative, and cognitive symptoms. While positive symptoms occur periodically during psychotic exacerbations, negative and cognitive symptoms often emerge before the first psychotic episode and persist with low functional outcome and poor prognosis. This review article outlines the importance of modern functional magnetic resonance imaging techniques for developing a stratified therapy of schizophrenic disorders. Functional neuroimaging evidence on the neural correlates of positive and particularly negative symptoms and cognitive deficits in schizophrenic disorders is briefly reviewed. Acute dysregulation of dopaminergic neurotransmission is crucially involved in the occurrence of psychotic symptoms. However, increasing evidence also implicates glutamatergic pathomechanisms, in particular N-methyl-d-aspartate (NMDA) receptor dysfunction in the pathogenesis of schizophrenia and in the appearance of negative symptoms and cognitive dysfunctions. In line with this notion, several gene variants affecting the NMDA receptor's pathway have been reported to increase susceptibility for schizophrenia, and have been investigated using the imaging genetics approach. In recent years, several attempts have been made to develop medications modulating the glutamatergic pathway with modest evidences for efficacy. The most successful approaches were those that aimed at influencing this pathway using compounds that enhance NMDA receptor function. More recently, the selective glycine reuptake inhibitor bitopertin has been shown to improve NMDA receptor hypofunction by increasing glycine concentrations in the synaptic cleft. Further research is required to test whether pharmacological agents with effects on the glutamatergic system can help to improve the treatment of negative symptoms in schizophrenic disorders.
    Frontiers in Psychiatry 04/2014; 5:32. DOI:10.3389/fpsyt.2014.00032
  • Source
    • "Although no selective agonists exist, several nonselective mGlu receptor agonists have entered late-stage clinical trials (Patil et al., 2007; Adams et al., 2013), but none have successfully reached the market. These clinical setbacks may be due to the lack of subtype selectivity, as studies suggest that even within groups, individual mGlu receptors can play opposing physiological roles (Conn and Pin, 1997; Caraci et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Group II and group III metabotropic glutamate (mGlu) receptors are G protein-coupled receptors (GPCRs) that inhibit adenylyl cyclase via activation of Gαi/o. The purpose of this study was to design a universal method that overcomes previous challenges in consistently measuring group II and group III mGlu receptor activation in stably transfected systems. In CHO cells stably transfected with the GloSensor cAMP biosensor, we optimized conditions for simple and highly reproducible (<5% S.E.M.) measurements of cAMP in real time. The GloSensor cAMP biosensor is a recombinant firefly luciferase conjugated to a cAMP binding domain, where cAMP binding promotes a conformational shift within the GloSensor protein, inducing luciferase activity; cAMP levels are positively correlated with light output resulting from the luciferase-mediated breakdown of D-luciferin. Each group II and group III mGlu receptor was then stably transfected into the CHO-GloSensor cell line, and experimental conditions were optimized for each receptor. During assay optimization, we observed ion sensitivity of several receptors and inverse agonist activity of the antagonist, LY341495. While these phenomena have been previously reported, they remain poorly understood, emphasizing the GloSensor assay as an important tool with which to study group II and group III mGlu receptors. Our results highlight many advantages of using the GloSensor method for measuring activation of group II and group III mGlu receptors, and they further suggest that corresponding methods designed to measure activation of any Gαi/o- or Gαs-coupled GPCR will be similarly advantageous.
    Journal of Pharmacology and Experimental Therapeutics 03/2014; 349(3). DOI:10.1124/jpet.113.211532 · 3.97 Impact Factor
Show more