Article

Clonal BRAF Mutations in Melanocytic Nevi and Initiating Role of BRAF in Melanocytic Neoplasia.

Department of Neuropathology, University Hospital Heidelberg, and CCU Neuropathology, DKFZ, Heidelberg, Germany (AvD).
CancerSpectrum Knowledge Environment (Impact Factor: 15.16). 05/2013; DOI: 10.1093/jnci/djt119
Source: PubMed

ABSTRACT BRAF(V600E) mutations are frequent in melanomas originating from intermittently sun-exposed skin and also in common acquired melanocytic nevi, suggesting that BRAF mutation is an early event in melanocytic neoplasia. All neoplastic melanocytes within such a nevus would be expected to carry the BRAF mutation, and thus we evaluated the frequency of cells with BRAF(V600E) mutations within acquired nevi by droplet digital polymerase chain reaction. In BRAF-mutant nevi the number of BRAF mutant alleles equaled the number of wild-type (WT) alleles in the neoplastic cell population, consistent with a fully clonal heterozygous BRAF mutation. The allelic ratio of BRAF(V600E) to BRAF(WT) in the eight VE1-positive nevi, adjusted for degree of stromal contamination, ranged from 0.84 to 1.12 with an average ratio of 1.01. This was confirmed by immunohistochemistry with an antibody specific for BRAF(V600E), which uniformly labeled the neoplastic cells without any evidence of heterogeneity. We found BRAF(V600E) mutations in the melanocytic nevi to be fully clonal, strongly suggesting that BRAF-activating mutations typically are early initiating events in melanocytic neoplasia.

0 Followers
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic melanoma remained for decades without any effective treatment and was thus considered as a paradigm of cancer resistance. Recent progress with understanding of the molecular mechanisms underlying melanoma initiation and progression revealed that melanomas are genetically and phenotypically heterogeneous tumors. This recent progress has allowed for the development of treatment able to improve for the first time the overall disease-free survival of metastatic melanoma patients. However, clinical responses are still either too transient or limited to restricted patient subsets. The complete cure of metastatic melanoma therefore remains a challenge in the clinic. This review aims to present the recent knowledge and discoveries of the molecular mechanisms involved in melanoma pathogenesis and their exploitation into clinic that have recently facilitated bench to bedside advances.
    01/2013; 2013:635203. DOI:10.1155/2013/635203
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of targeted therapies for cancer has created a need for the development of companion diagnostic tests. Assays developed in recent years are aimed at determining both the effectiveness and safety of specific drugs for a defined group of patients, thus, enabling the more efficient design of clinical trials and also supporting physicians when making treatment-related decisions. Immunohistochemistry (IHC) is a widely accepted method for protein expression analyses in human tissues. Immunohistochemical assays, used to localize and quantitate relative protein expression levels within a morphological context, are frequently used as companion diagnostics during clinical trials and also following drug approval. Herein, we describe established immunochemistry-based methods and their application in routine diagnostics. We also explore the possibility of using IHC to detect specific protein mutations in addition to DNA-based tests. Finally, we review alternative protein binders and proximity ligation assays and discuss their potential to facilitate the development of novel, targeted therapies against cancer.
    Frontiers in Oncology 10/2013; 3:271. DOI:10.3389/fonc.2013.00271