Vinculin tension distributions of individual stress fibers within cell-matrix adhesions

Journal of Cell Science (Impact Factor: 5.43). 05/2013; 126(14). DOI: 10.1242/jcs.119032
Source: PubMed


Actomyosin stress fibers (SFs) enable cells to exert traction on planar extracellular matrices (ECMs) by tensing focal adhesions (FAs) at the cell-ECM interface. While it is widely appreciated that the spatial and temporal distribution of these tensile forces play key roles in polarity, motility, fate choice, and other defining cell behaviors, virtually nothing is known about how an individual SF quantitatively contributes to tensile loads borne by specific molecules within associated FAs. We address this key open question by using femtosecond laser ablation to sever single SFs in cells while tracking tension across vinculin using a molecular optical sensor. We show that disruption of a single SF reduces tension across vinculin in FAs located throughout the cell, with enriched vinculin tension reduction in FAs oriented parallel to the targeted SF. Remarkably, however, some subpopulations of FAs exhibit enhanced vinculin tension upon SF irradiation and undergo dramatic, unexpected transitions between tension-enhanced and tension-reduced states. These changes depend strongly on the location of the severed SF, consistent with our earlier finding that different SF pools are regulated by distinct myosin activators. We critically discuss the extent to which these measurements can be interpreted in terms of whole-FA tension and traction and propose a model that relates SF tension to adhesive loads and cell shape stability. These studies represent the most direct and high-resolution intracellular measurements of SF contributions to tension on specific FA proteins to date and offer a new paradigm for investigating regulation of adhesive complexes by cytoskeletal force.

Download full-text


Available from: Ching-Wei Chang, Jun 19, 2014
19 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most unique physical features of cell adhesion to external surfaces is the active generation of mechanical force at the cell-material interface. This includes pulling forces generated by contractile polymer bundles and networks, and pushing forces generated by the polymerization of polymer networks. These forces are transmitted to the substrate mainly by focal adhesions, which are large, yet highly dynamic adhesion clusters. Tissue cells use these forces to sense the physical properties of their environment and to communicate with each other. The effect of forces is intricately linked to the material properties of cells and their physical environment. Here a review is given of recent progress in our understanding of the role of forces in cell adhesion from the viewpoint of theoretical soft matter physics and in close relation to the relevant experiments.
    Review of Modern Physics 09/2013; 85(3). DOI:10.1103/RevModPhys.85.1327 · 29.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells are exquisitely sensitive to the mechanical nature of their environment, including applied force and the stiffness of the extracellular matrix (ECM). Recent evidence has shown that these variables are critical regulators of diverse processes mediating embryonic development, adult tissue physiology, and many disease states, including cancer, atherosclerosis, and myopathies. Often, detection of mechanical stimuli is mediated by the structures that link cells that surround ECM, the focal adhesions (FAs). FAs are intrinsically force sensitive and display altered dynamics, structure, and composition in response to applied load. While much progress has been made in determining the proteins that localize to and regulate the formation of these structures, less is known about the role of tension across specific proteins in this process. A recently developed class of force-sensitive biosensors is enabling a greater understanding of the molecular bases of cellular mechanosensitivity and cell migration.
    Progress in molecular biology and translational science 08/2014; 126:3-24. DOI:10.1016/B978-0-12-394624-9.00001-4 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual SFs. SF retraction dynamics associated with MIIA and MIIB suppression qualitatively phenocopy our earlier measurements in the setting of Rho kinase (ROCK) and myosin light chain kinase (MLCK) inhibition, respectively. Furthermore, fluorescence imaging and photobleaching recovery reveal that MIIA and MIIB are enriched in and more stably localize to ROCK- and MLCK-controlled central and peripheral SFs, respectively. Additional domain-mapping studies surprisingly reveal that deletion of the head domain speeds SF retraction, which we ascribe to reduced drag from actomyosin crosslinking and frictional losses. We propose a model in which ROCK/MIIA and MLCK/MIIB functionally regulate common pools of SFs, with MIIA crosslinking and motor functions jointly contributing to SF retraction dynamics and cellular traction forces.
    Biophysical Journal 01/2014; 106(2):169a. DOI:10.1016/j.bpj.2013.11.960 · 3.97 Impact Factor
Show more