Article

Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice

Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin
Journal of Neuroscience Research (Impact Factor: 2.73). 09/2013; 91(9). DOI: 10.1002/jnr.23242
Source: PubMed

ABSTRACT Although microglial activation is associated with all CNS disorders, many of which are sexually dimorphic or age-dependent, little is known about whether microglial basal gene expression is altered with age in the healthy CNS or whether it is sex dependent. Analysis of microglia from the brains of 3-day (P3)- to 12-month-old male and female C57Bl/6 mice revealed distinct gene expression profiles during postnatal development that differ significantly from those in adulthood. Microglia at P3 are characterized by relatively high iNOS, TNFα and arginase-I mRNA levels, whereas P21 microglia have increased expression of CD11b, TLR4, and FcRγI. Adult microglia (2-4 months) are characterized by low proinflammatory cytokine expression, which increases by 12 months of age. Age-dependent differences in gene expression suggest that microglia likely undergo phenotypic changes during ontogenesis, although in the healthy brain they did not express exclusively either M1 or M2 phenotypic markers at any time. Interestingly, microglia were sexually dimorphic only at P3, when females had higher expression of inflammatory cytokines than males, although there were no sex differences in estrogen receptor expression at this or any other time evaluated here. Compared with microglia in vivo, primary microglia prepared from P3 mice had considerably altered gene expression, with higher levels of TNFα, CD11b, arginase-I, and VEGF, suggesting that culturing may significantly alter microglial properties. In conclusion, age- and sex-specific variances in basal gene expression may allow differential microglial responses to the same stimulus at different ages, perhaps contributing to altered CNS vulnerabilities and/or disease courses. © 2013 Wiley Periodicals, Inc.

4 Followers
 · 
335 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglial cells participate in brain development and influence neuronal loss and synaptic maturation. Fractalkine is an important neuronal chemokine whose expression increases during development and that can influence microglia function via the fractalkine receptor, CX3CR1. Mice lacking Cx3cr1 show a variety of neuronal defects thought to be the result of deficient microglia function. Activation of CX3CR1 is important for the proper migration of microglia to sites of injury and into the neuropil during development. However, little is known about how fractalkine modulates microglial properties during development. Here we examined microglial morphology, response to ATP, and K+ current properties in acute brain slices from Cx3cr1 knockout mice across postnatal hippocampal development. We found that fractalkine signaling is necessary for the development of several morphological and physiological features of microglia. Specifically, we found that the occurrence of an outward rectifying K+ current, typical of activated microglia, that peaked during the second and third postnatal week, was reduced in Cx3cr1 knockout mice. Fractalkine signaling also influenced microglial morphology and ability to extend processes in response to ATP following its focal application to the slice. Our results reveal the developmental profile of several morphological and physiological properties of microglia and demonstrate that these processes are modulated by fractalkine signaling.
    Frontiers in Cellular Neuroscience 03/2015; 9. DOI:10.3389/fncel.2015.00111 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2) but also other targets (e.g., GPR18/GPR55). We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO) production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.
    01/2015; 2015:1-10. DOI:10.1155/2015/130639
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia are resident antigen-presenting cells in the central nervous system (CNS) that either suppress or promote disease depending on their activation phenotype and the microenvironment. Multiple sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the CNS, and experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate pathogenic mechanisms and therapeutic effects. We isolated and cultured microglia from adult mouse brains and exposed them to specific combinations of stimulatory molecules and cytokines, the combination of IL-4, IL-10, and TGF-β yielding the optimal regime for induction of an immunosuppressive phenotype (M2). M2 microglia were characterized by decreased expression or production of CD86, PD-L1, nitric oxide, and IL-6, increased expression of PD-L2, and having a potent capacity to retain their phenotype on secondary proinflammatory stimulation. M2 microglia induced regulatory T cells, suppressed T-cell proliferation, and downmodulated M1-associated receptor expression in M1 macrophages. Myelin oligodendrocyte glycoprotein (MOG)-induced EAE was induced in DBA/1 mice and at different time points (0, 5, 12, or 15 days postimmunization) 3 × 105 M2 microglia were transferred intranasally. A single transfer of M2 microglia attenuated the severity of established EAE, which was particularly obvious when the cells were injected at 15 days postimmunization. M2 microglia-treated mice had reduced inflammatory responses and less demyelination in the CNS. Our findings demonstrate that adult M2 microglia therapy represents a novel intervention that alleviated established EAE and that this therapeutic principle may have relevance for treatment of MS patients. GLIA 2014
    Glia 05/2014; 62(5). DOI:10.1002/glia.22643 · 6.03 Impact Factor

Similar Publications