Neurodegenerative Disorder FTDP-17-Related Tau Intron 10 + 16C→T Mutation Increases Tau Exon 10 Splicing and Causes Tauopathy in Transgenic Mice.

Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
American Journal Of Pathology (Impact Factor: 4.6). 05/2013; DOI: 10.1016/j.ajpath.2013.03.015
Source: PubMed

ABSTRACT Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative disorder caused by mutations in the tau gene. Many mutations identified in FTDP-17 have been shown to affect tau exon 10 splicing in vitro, which presumably causes pathologic imbalances in exon 10(-) [3-repeat (3R)] and exon 10(+) [4-repeat (4R)] tau expression and leads to intracellular inclusions of hyperphosphorylated tau in patient brains. However, no reports have investigated this theory using model mice with a tau intronic mutation. Herein, we generated new transgenic mice harboring the tau intron 10 + 16C→T mutation. We prepared a transgene construct containing intronic sequences required for exon 10 splicing in the longest tau isoform cDNA. Although mice bearing the construct without the intronic mutation showed normal developmental changes of the tau isoform from 3R tau to equal amounts of 3R and 4R tau, mice with the mutation showed much higher levels of 4R tau at the adult stage. 4R tau was selectively recovered in insoluble brain fractions in their old age. Furthermore, these mice displayed abnormal tau phosphorylation, synapse loss and dysfunction, memory impairment, glial activation, pretangle formation, and neuronal loss in an age-dependent manner. These findings provide the first evidence in a mouse model that a tau intronic mutation-induced imbalance of 3R and 4R tau could be a cause of tauopathy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Senile plaques comprised of Aβ aggregates and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau filaments are the hallmarks of Alzheimer's disease (AD). A number of amyloid precursor protein (APP) transgenic (Tg) mice harboring APP mutations have been generated as animal models of AD. These mice successfully display amyloid plaque formation and subsequent tau hyperphosphorylation, but seldom induce NFT formations. We have demonstrated that the APPOSK-Tg mice, which possess the E693Δ (Osaka) mutation in APP and thereby accumulate Aβ oligomers without plaques, exhibit tau hyperphosphorylation at 8 months, but not NFT formation even at 24 months. We assumed that APP-Tg mice, including ours, failed to form NFTs because NFT formation requires human tau. To test this hypothesis, we crossbred APPOSK-Tg mice with tau-Tg mice (tau264), which express low levels of 3-repeat and 4-repeat wild-type human tau without any pathology. The resultant double Tg mice displayed tau hyperphosphorylation at 6 months and NFT formation at 18 months in the absence of tau mutations. Importantly, these NFTs contained both 3-repeat and 4-repeat human tau, similar to those in AD. Furthermore, the double Tg mice exhibited Aβ oligomer accumulation, synapse loss, and memory impairment at 6 months and neuronal loss at 18 months, all of which appeared earlier than in the parent APPOSK-Tg mice. These results suggest that Aβ and human tau synergistically interact to accelerate each other's pathology, that the presence of human tau is critical for NFT formation, and that Aβ oligomers can induce NFTs in the absence of amyloid plaques.
    Acta Neuropathologica 02/2014; 127(5). DOI:10.1007/s00401-014-1259-1 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing is an important regulator of the transcriptome. However, mutations may cause alteration of splicing patterns, which in turn leads to disease. During the past 10 years, exon skipping has been looked upon as a powerful tool for correction of missplicing in disease and progress has been made towards clinical trials. In this review, we discuss the use of antisense oligonucleotides to correct splicing defects through exon skipping, with a special focus on diseases affecting the nervous system, and the latest stage achieved in its progress.
    02/2014; 24(1):69-86. DOI:10.1089/nat.2013.0461
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Cellular inclusions of hyperphosphorylated tau are a hallmark of tauopathies, which are neurodegenerative disorders that include Alzheimer's disease (AD). Active and passive immunization against hyperphosphorylated tau has been shown to attenuate phenotypes in model mice. We developed new monoclonal antibodies to hyperphosphorylated tau and sought high therapeutic efficacy for future clinical use.Methods Using more than 20 antibodies, we investigated which sites on tau are phosphorylated early and highly in the tauopathy mouse models tau609 and tau784. These mice display tau hyperphosphorylation, synapse loss, memory impairment at 6 months, and tangle formation and neuronal loss at 15 months. We generated mouse monoclonal antibodies to selected epitopes and examined their effects on memory and tau pathology in aged tau609 and tau784 mice by the Morris water maze and by histological and biochemical analyses.ResultsImmunohistochemical screening revealed that pSer413 is expressed early and highly. Monoclonal antibodies to pSer413 and to pSer396 (control) were generated. These antibodies specifically recognized pathological tau in AD brains but not normal tau in control brains according to Western blots. Representative anti-pSer413 and anti-pSer396 antibodies were injected intraperitoneally into 10–11- or 14-month-old mice once a week at 0.1 or 1 mg/shot 5 times. The anti-pSer413 antibody significantly improved memory, whereas the anti-pSer396 antibodies showed less effect. The cognitive improvement paralleled a reduction in the levels of tau hyperphosphorylation, tau oligomer accumulation, synapse loss, tangle formation, and neuronal loss.InterpretationThese results indicate that pSer413 is a promising target in the treatment of tauopathy.
    03/2015; 2(3). DOI:10.1002/acn3.171