Article

A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers"

Department of Medicine, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA.
Journal of Translational Medicine (Impact Factor: 3.99). 01/2009; 6:81. DOI: 10.1186/1479-5876-6-81
Source: PubMed

ABSTRACT The International Society for the Biological Therapy of Cancer (iSBTc) has initiated in collaboration with the United States Food and Drug Administration (FDA) a programmatic look at innovative avenues for the identification of relevant parameters to assist clinical and basic scientists who study the natural course of host/tumor interactions or their response to immune manipulation. The task force has two primary goals: 1) identify best practices of standardized and validated immune monitoring procedures and assays to promote inter-trial comparisons and 2) develop strategies for the identification of novel biomarkers that may enhance our understating of principles governing human cancer immune biology and, consequently, implement their clinical application. Two working groups were created that will report the developed best practices at an NCI/FDA/iSBTc sponsored workshop tied to the annual meeting of the iSBTc to be held in Washington DC in the Fall of 2009. This foreword provides an overview of the task force and invites feedback from readers that might be incorporated in the discussions and in the final document.

Download full-text

Full-text

Available from: Sylvia Janetzki, Jul 03, 2015
0 Followers
 · 
184 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept of using replicating oncolytic viruses in cancer therapy dates to the beginning of the twentieth century. However, in the last few years, an increasing number of pre-clinical and clinical trials have been carried out with promising preliminarily results. Novel, indeed, is the suggestion that viral oncolytic therapy might not operate exclusively through an oncolysis-mediated process but additionally requires the "assistance" of the host's immune system. Originally, the host's immune response was believed to play a predominant obstructive role against viral replication, hence limiting the anti-tumor efficacy of viral vectors. Recent data, however, suggest that the immune response may also play a key role in promoting tumor destruction in association with the oncolytic process. In fact, immune effector pathways activated during oncolytic virus-induced tumor rejection seem to follow a similar pattern to those observed when the broader phenomenon of immune-mediated tissue-specific rejection occurs in other immune-related pathologies. We recently formulated the "Immunologic Constant of Rejection" hypothesis, emphasizing commonalties in transcriptional patterns observed when tissue-destruction occurs: whether with a favorable outcome, such as in tumor rejection and pathogen clearance; or a destructive one, such as in allograft rejection or autoimmunity. Here, we propose that a similar mechanism induces clearance of virally infected tumors and that such a mechanism is primarily dependent on innate immune functions.
    Cancer Immunology and Immunotherapy 04/2009; 58(9):1355-62. DOI:10.1007/s00262-009-0686-7 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is becoming increasingly recognized that experimental animal models, while useful to address monothematic biological questions, bear unpredictable relevance to human disease. Several reasons have been proposed. However, the uncontrollable nature of human genetics and the heterogeneity of disease that can only be replicated with difficulty experimentally play a leading role. Comparative immunology is a term that generally refers to the analysis of shared or diverging facets of immunology among species; these comparisons are carried out according to the principle that evolutionarily conserved themes outline biologic functions universally relevant for survival. We propose that a similar strategy could be applied to searching for themes shared by distinct immune pathologies within our own species. Identification of common patterns may outline pathways necessary for a particular determinism to occur, such as tissue-specific rejection or tolerance. This approach is founded on the unproven but sensible presumption that nature does not require an infinite plethora of redundant mechanisms to reach its purposes. Thus, immune pathologies must follow, at least in part, common means that determine their onset and maintenance. Commonalities among diseases can, in turn, be segregated from disease-specific patterns uncovering essential mechanisms that may represent universal targets for immunotherapy.
    Immunotherapy 05/2009; 1(3):355-66. DOI:10.2217/imt.09.10 · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anticancer vaccines have not matched the clinical expectations projected from their ability to induce consistently systemic anticancer T-cell responses. Thus, a dichotomy is observed between the immunological and clinical endpoints of anticancer immunization. Anticancer vaccines have clearly demonstrated that highly specific T-cell responses can be induced that can recognize autologous cancer antigens in patients with cancer. This ability is an outstanding achievement of modern biotechnology, yielding one of the most specific types of potential anticancer reagents. However, systemic, vaccine-induced anticancer responses exemplify a broader immunological paradox: cytotoxic T-cells can coexist within the same organism with their target cells not only in the context of cancer, but also in the context of chronic infections, well-controlled allo-transplant reactions and autoimmunity. According to this view, anticancer immune responses are a facet of a tissue-specific autoimmune phenomenon specific for cancer tissue that may or may not result in the successful immune-destruction of target cells, depending on an assortment of genetic factors related to the background of the host or evolving phenotypes of a heterogeneous cancer environment. This feature article summarizes the current understanding of the mechanisms leading to tumor rejection in humans as well as in experimental models, in the context of the broader immunological phenomenon leading to tissue-specific destruction. Anticancer vaccines that may not induce clinically significant anticancer responses independently could function as a unique tool to enhance the specificity of the response of the host against cancer, provided that strategies are implemented to amplify the immune reaction initiated by vaccine-induced antibodies and/or T-cells.
    IDrugs: the investigational drugs journal 06/2009; 12(5):297-301. · 2.33 Impact Factor