Reconstitution of Escherichia coli glutamine synthetase adenylyltransferase from N-terminal and C-terminal fragments of the enzyme.

Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0606, USA.
Biochemistry (Impact Factor: 3.38). 01/2009; 48(2):415-23. DOI: 10.1021/bi801775b
Source: PubMed

ABSTRACT ATase brings about the short-term regulation of glutamine synthetase (GS) by catalyzing the adenylylation and deadenylylation of GS in response to signals of cellular nitrogen status and energy. The adenylyltransferase (AT) activity of ATase is activated by glutamine and by the unmodified form of the PII signal transduction protein and is inhibited by PII-UMP. Conversely, the adenylyl-removing (AR) activity of ATase is activated by PII-UMP and inhibited by unmodified PII and by glutamine. Here, we show that the enzyme can be reconstituted from two purified polypeptides that comprise the N-terminal two-thirds of the protein and the C-terminal one-third of the protein. Properties of the reconstituted enzyme support recent hypotheses for the sites of regulatory interactions and mechanisms for intramolecular signal transduction. Specifically, our results are consistent with the protein activators (PII and PII-UMP) binding to the enzyme domain with the opposing activity, with intramolecular signal transduction by direct interactions between the N-terminal AR catalytic domain and the C-terminal AT catalytic domain. Similarly, glutamine inhibition of the AR activity involved intramolecular signaling between the AT and AR domains. Finally, our results are consistent with the hypothesis that the AR activity of the N-terminal domain required activation by the opposing C-terminal (AT) domain.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.
    FEMS microbiology reviews 02/2010; 34(4):588-605. · 10.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Xeroderma pigmentosum is a rare, autosomal recessive disease caused by a defect in DNA repair. Patients with xeroderma pigmentosum often have cutaneous and ocular sun sensitivity, freckle-like skin pigmentation, multiple skin and eye cancers, and, in some patients, progressive neurodegeneration. Xeroderma pigmentosum predominantly affects the ultraviolet (UV) exposed ocular surface, resulting in eyelid atrophy and cancers, corneal dryness, exposure keratopathy, and conjunctival tumors. We report the clinical history and ocular pathology of two white women who had xeroderma pigmentosum with neurological degeneration: Case 1 (died at age 44 years) and Case 2 (died at age 45 years). Case 1, with mutations in the XPA gene, had more than 180 basal cell carcinomas of her skin and eyelids and died from complications of neurodegeneration. Case 2, with mutations in the XPD gene, was sun-protected and had three skin cancers. She died from complications of neurodegeneration and pneumonia. Both patients had bilateral pinguecula, corneal pannus, and exposure keratopathy. Case 1 had bilateral optic atrophy, and Case 2 had bilateral peripheral retinal pigmentary degeneration. Both patients developed retinal gliosis. The ophthalmic manifestations and pathology of xeroderma pigmentosum are discussed and reviewed with respect to this report and other cases in the literature. These cases illustrate the role of DNA repair in protection of the eyes from UV damage and neurodegeneration of the retina.
    Survey of Ophthalmology 01/2011; 56(4):348-61. · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamine synthetase (GS) is the central enzyme for nitrogen assimilation in Escherichia coli and is subject to reversible adenylylation (inactivation) by a bifunctional GS adenylyltransferase/adenylyl-removing enzyme (ATase). In vitro, both of the opposing activities of ATase are regulated by small effectors, most notably glutamine and 2-oxoglutarate. In vivo, adenylyltransferase (AT) activity is critical for growth adaptation when cells are shifted from nitrogen-limiting to nitrogen-excess conditions and a rapid decrease of GS activity by adenylylation is needed. Here, we show that the adenylyl-removing (AR) activity of ATase is required to counterbalance its AT activity during steady-state growth under both nitrogen-excess and nitrogen-limiting conditions. This conclusion was established by studying AR(-)/AT(+) mutants, which surprisingly displayed steady-state growth defects in nitrogen-excess conditions due to excessive GS adenylylation. Moreover, GS was abnormally adenylylated in the AR(-) mutants even under nitrogen-limiting conditions, whereas there was little GS adenylylation in wild-type strains. Despite the importance of AR activity, we establish that AT activity is significantly regulated in vivo, mainly by the cellular glutamine concentration. There is good general agreement between quantitative estimates of AT regulation in vivo and results derived from previous in vitro studies except at very low AT activities. We propose additional mechanisms for the low AT activities in vivo. The results suggest that dynamic counterbalance by reversible covalent modification may be a general strategy for controlling the activity of enzymes such as GS, whose physiological output allows adaptation to environmental fluctuations.
    Journal of Molecular Biology 09/2010; 404(3):522-36. · 3.91 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014