Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications

Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
Journal of Neural Engineering (Impact Factor: 3.42). 02/2009; 6(1):016001. DOI: 10.1088/1741-2560/6/1/016001
Source: PubMed

ABSTRACT Aligned, electrospun polymer fibers have shown considerable promise in directing regenerating axons in vitro and in vivo. However, in several studies, final electrospinning parameters are presented for producing aligned fiber scaffolds, and alignment where minimal fiber crossing occurs is not achieved. Highly aligned species are necessary for neural tissue engineering applications to ensure that axonal extension occurs through a regenerating environment efficiently. Axonal outgrowth on fibers that deviate from the natural axis of growth may delay axonal extension from one end of a scaffold to the other. Therefore, producing aligned fiber scaffolds with little fiber crossing is essential. In this study, the contributions of four electrospinning parameters (collection disk rotation speed, needle size, needle tip shape and syringe pump flow rate) were investigated thoroughly with the goal of finding parameters to obtain highly aligned electrospun fibers made from poly-L-lactic acid (PLLA). Using an 8 wt% PLLA solution in chloroform, a collection disk rotation speed of 1000 revolutions per minute (rpm), a 22 gauge, sharp-tip needle and a syringe pump rate of 2 ml h(-1) produced highly aligned fiber (1.2-1.6 microm in diameter) scaffolds verified using a fast Fourier transform and a fiber alignment quantification technique. Additionally, the application of an insulating sheath around the needle tip improved the rate of fiber deposition (electrospinning efficiency). Optimized scaffolds were then evaluated in vitro using embryonic stage nine (E9) chick dorsal root ganglia (DRGs) and rat Schwann cells (SCs). To demonstrate the importance of creating highly aligned scaffolds to direct neurite outgrowth, scaffolds were created that contained crossing fibers. Neurites on these scaffolds were directed down the axis of the aligned fibers, but neurites also grew along the crossed fibers. At times, these crossed fibers even stopped further axonal extension. Highly aligned PLLA fibers generated under optimized electrospinning conditions guided neurite and SC growth along the aligned fibers. Schwann cells demonstrated the bipolar phenotype seen along the fibers. Using a novel technique to determine fiber density, an increase in fiber density correlated to an increase in the number of neurites, but average neurite length was not statistically different between the two different fiber densities. Together, this work presents methods by which to produce highly aligned fiber scaffolds efficiently and techniques for assessing neurite outgrowth on different fiber scaffolds, while suggesting that crossing fibers may be detrimental in fostering efficient, directed axonal outgrowth.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. Approach. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Main Results. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Significance. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.
    Journal of Neural Engineering 06/2014; 11(4):046002. DOI:10.1088/1741-2560/11/4/046002 · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: End-functional PLLA nanofibers were fabricated into mats of random or aligned fibers and functionalized post-spinning using metal-free "click chemistry" with the peptide Tyr-Ile-Gly-Ser-Arg (YIGSR). Fibers that were both aligned and functionalized with YIGSR were found to significantly increase the fraction of mouse embryonic stem cells (mESC) expressing neuron-specific class III beta-tubulin (TUJ1), the level of neurite extension and gene expression for neural markers compared to mESC cultured on random fiber mats and unfunctionalized matrices. Precise functionalization of degradable polymers with bioactive peptides created translationally-relevant materials that capitalize on the advantages of both synthetic and natural systems, while mitigating the classic limitations of each.
    Biomaterials 09/2013; 34(36). DOI:10.1016/j.biomaterials.2013.08.028 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three dimensional (3D) conduits facilitate nerve regeneration. Parallel microfibers have been shown to guide axon extension and Schwann cell migration on flat sheets via topographical cues. However, incorporation of aligned microfibers into 3D conduits to accelerate nerve regeneration has proven challenging. We report an electrospinning technique to incorporate parallel microfibers into 3D constructs at high surface areas while retaining an open architecture. The nerve guide consists of many microchannels lined with a thin layer of longitudinally-aligned microfibers. This design aims to maximize benefits of topographical cues without inhibiting cellular infiltration. We support this hypothesis by demonstrating efficient cell infiltration in vitro. Additionally, this new technique reduces wall thickness compared to our previous design, providing a greater total area for tissue growth. This approach results in an architecture that very closely mimics the structure of decellularized nerve but with larger microchannel diameters to encourage cell infiltration. We believe that reproducing the native architecture is the first step toward matching autograph efficacy. Furthermore, this design can be combined with other biochemical cues to promote nerve regeneration.
    Biofabrication 09/2013; 5(3):035015. DOI:10.1088/1758-5082/5/3/035015 · 4.30 Impact Factor


Available from