Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice.

Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.74). 01/2009; 106(1):250-5. DOI: 10.1073/pnas.0804333106
Source: PubMed

ABSTRACT Chronic obstructive pulmonary disease (COPD), which comprises emphysema and chronic bronchitis resulting from prolonged exposure to cigarette smoke (CS), is a major public health burden with no effective treatment. Emphysema is also associated with pulmonary hypertension, which can progress to right ventricular failure, an important cause of morbidity and mortality among patients with COPD. Nuclear erythroid 2 p45 related factor-2 (Nrf2) is a redox-sensitive transcription factor that up-regulates a battery of antioxidative genes and cytoprotective enzymes that constitute the defense against oxidative stress. Recently, it has been shown that patients with advanced COPD have a decline in expression of the Nrf2 pathway in lungs, suggesting that loss of this antioxidative protective response is a key factor in the pathophysiological progression of emphysema. Furthermore, genetic disruption of Nrf2 in mice causes early-onset and severe emphysema. The present study evaluated whether the strategy of activation of Nrf2 and its downstream network of cytoprotective genes with a small molecule would attenuate CS-induced oxidative stress and emphysema. Nrf2(+/+) and Nrf2(-/-) mice were fed a diet containing the potent Nrf2 activator, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), while being exposed to CS for 6 months. CDDO-Im significantly reduced lung oxidative stress, alveolar cell apoptosis, alveolar destruction, and pulmonary hypertension in Nrf2(+/+) mice caused by chronic exposure to CS. This protection from CS-induced emphysema depended on Nrf2, as Nrf2(-/-) mice failed to show significant reduction in alveolar cell apoptosis and alveolar destruction after treatment with CDDO-Im. These results suggest that targeting the Nrf2 pathway during the etiopathogenesis of emphysema may represent an important approach for prophylaxis against COPD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor erythroid-2 related factor 2 (Nrf2) is a master transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes. While knockout of Nrf2 exaggerates cardiac pathological remodeling and dysfunction in diverse pathological settings, pharmacological activation of Nrf2 protects against cardiomyocyte injury and cardiac dysfunction. In contrast, there is also a concern that the chronic activation of Nrf2 secondary to oxidative stress is a contributing mechanism for the reductive stress-mediated heart failure. However, a direct link between cardiac specific activation of Nrf2 and cardiac protection or dysfunction in vivo remains to be established. Therefore, we investigated the effect of cardiomyocyte-specific transgenic activation of Nrf2 (Nrf2(ctg)) on cardiac pathological remodeling and dysfunction. We found that the cardiomyocyte-specific activation of Nrf2 suppressed myocardial oxidative stress as well as cardiac apoptosis, fibrosis, hypertrophy, and dysfunction in a setting of sustained pressure overload induced by transverse aortic arch constriction (TAC) in mice. Notably, the constitutive activation of Nrf2 increased the steady level of autophagosomes while decreasing the ubiquitinated protein aggregates in the heart after TAC. Nrf2 gene gain- and loss-of-function approaches revealed that Nrf2 enhances autophagosome formation and autophagic flux in cardiomyocytes. Unexpectedly, while Nrf2 minimally regulated apoptosis, it suppressed significantly the proteotoxic necrosis in cardiomyocytes. In addition, Nrf2 attenuated the proteocytotoxicity presumably via enhancing autophagy-mediated clearance of ubiquitinated protein aggregates in cardiomyocytes. Taken together, we demonstrated for the first time that cardiac specific activation of Nrf2 suppresses cardiac maladaptive remodeling and dysfunction most likely by enhancing autophagic clearance of toxic protein aggregates in the heart.
    Journal of Molecular and Cellular Cardiology 04/2014; · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Chronic obstructive pulmonary disease (COPD) is a leading global cause of mortality and chronic morbidity. Inhalation of cigarette smoke is the principal risk factor for development of this disease. COPD is a progressive disease that is typically characterised by chronic pulmonary inflammation, mucus hypersecretion, airway remodelling and emphysema that collectively reduce lung function. There are currently no therapies that effectively halt or reverse disease progression. It is hoped that the development of animal models that develop the hallmark features of COPD, in a short time frame, will aid in the identifying and testing of new therapeutic approaches. Areas covered: The authors review the recent developments in mouse models of chronic cigarette smoke-induced COPD as well as the principal findings. Furthermore, the authors discuss the use of mouse models to understand the pathogenesis and the contribution of infectious exacerbations. They also discuss the investigations of the systemic co-morbidities of COPD (pulmonary hypertension, cachexia and osteoporosis). Expert opinion: Recent advances in the field mark a point where animal models recapitulate the pathologies of COPD patients in a short time frame. They also reveal novel insights into the pathogenesis and potential treatment of this debilitating disease.
    Expert Opinion on Drug Discovery 04/2014; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor, nuclear factor (NF), erythroid-derived 2-related factor 2 (NRF2), was discovered nearly 2 decades ago. Since then, over 4,000 papers have been published on NRF2 function in diverse biological systems, and it has been found to be a critical regulator of antioxidant and defense genes with antioxidant response elements in their promoters. NRF2 is particularly important in protecting cells and tissues under highly oxidative microenvironments, including the airways that interface with the external environment and are exposed to pollutants and other oxidant stressors. Using mice with targeted deletion of Nrf2, a protective role for this transcription factor has been determined in many model diseases, including acute lung injury, emphysema, allergy and asthma, pulmonary fibrosis, and respiratory syncytial virus disease. Recent studies have also found that murine Nrf2 is important in lung development and protection against neonatal lung injury. Moreover, functional polymorphisms in human NRF2 have been known to associate with disease severity, indicating a potentially important protective function. However, there is also a "dark side" to NRF2 function, as it has been found to enhance advanced stages of carcinogenesis in the lung and some other tissues. NRF2 inducers such as phytochemical isothyocyanates and synthetic triterpenoids, have been discovered and used in model systems of oxidant-induced lung diseases, and data suggest a potential for clinical interventions. Future investigations of NRF2 should yield further insight into its contribution to normal and pathophysiological conditions in the airways, and alternative treatment strategies to protect against oxidative respiratory disease.
    American Journal of Respiratory Cell and Molecular Biology 05/2014; 50(5):844-847. · 4.15 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014