Biosorbents for heavy metals removal and their future.

Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China.
Biotechnology advances (Impact Factor: 8.25). 01/2009; 27(2):195-226. DOI: 10.1016/j.biotechadv.2008.11.002
Source: PubMed

ABSTRACT A vast array of biological materials, especially bacteria, algae, yeasts and fungi have received increasing attention for heavy metal removal and recovery due to their good performance, low cost and large available quantities. The biosorbent, unlike mono functional ion exchange resins, contains variety of functional sites including carboxyl, imidazole, sulphydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide and hydroxyl moieties. Biosorbents are cheaper, more effective alternatives for the removal of metallic elements, especially heavy metals from aqueous solution. In this paper, based on the literatures and our research results, the biosorbents widely used for heavy metal removal were reviewed, mainly focusing on their cellular structure, biosorption performance, their pretreatment, modification, regeneration/reuse, modeling of biosorption (isotherm and kinetic models), the development of novel biosorbents, their evaluation, potential application and future. The pretreatment and modification of biosorbents aiming to improve their sorption capacity was introduced and evaluated. Molecular biotechnology is a potent tool to elucidate the mechanisms at molecular level, and to construct engineered organisms with higher biosorption capacity and selectivity for the objective metal ions. The potential application of biosorption and biosorbents was discussed. Although the biosorption application is facing the great challenge, there are two trends for the development of the biosorption process for metal removal. One trend is to use hybrid technology for pollutants removal, especially using living cells. Another trend is to develop the commercial biosorbents using immobilization technology, and to improve the biosorption process including regeneration/reuse, making the biosorbents just like a kind of ion exchange resin, as well as to exploit the market with great endeavor.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Radiocesium (Cs) removal from waters becomes an emerging issue after the Fukushima Daiichi Nuclear Power Plant Disaster, during which a total of approximately 3.3×10(16)Bq Cs was released to contaminate the environment. This mini-review provided a summary on literature works to develop efficient adsorbent for removing Cs from waters. Adsorbent made of raw and modified minerals, composites particles, and biosorbents that are highly specific to Cs in the presence of other alkali and alkali earth metals were summarized. Development of Prussian blue (PB) nanoparticles on Cs removal and its potential use in drinking waterworks was discussed. This review is a unique report for adsorption removal of Cs from contaminated waters.
    Bioresource Technology 01/2014; · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25-150 mgl(-1)) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl(-1) initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites.
    Saudi Journal of Biological Sciences 04/2013; 20(2):121-129. · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Based on the coupling of biosorption and membrane separation, a low cost membrane-type biosorbent (MBS) of Penicillium biomass was prepared. The surface morphology, pore properties and functional groups were studied via the characterization of MBS. Batch biosorption experiments indicated the maximum biosorption capacity of Cu(II) on MBS was 126.58mg/g and about 90% of that on chitosan membrane. A plate column reactor filled with multi-layer of MBS was built for treatment of wastewater contaminated by Cu(II). The biosorption process factors were screened using Plackett-Burman design and three significant variables were selected for further optimization via response surface methodology (RSM) based on Box-Behnken model. A statistically second-order polynomial model was constructed with the error below 1.22%, on the basis of which the three-dimensional response surfaces were plotted. The prepared membrane-type biosorbent could be used successfully for 10 biosorption-desorption-regeneration cycles without decreasing its biosorption ability obviously.
    Bioresource Technology 06/2013; 143C:490-498. · 5.04 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014