Article

GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability.

Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 Taylor, Chicago, IL 60612, USA.
Expert Review of Neurotherapeutics (Impact Factor: 2.83). 02/2009; 9(1):87-98. DOI: 10.1586/14737175.9.1.87
Source: PubMed

ABSTRACT The neuronal GABAergic mechanisms that mediate the symptomatic beneficial effects elicited by a combination of antipsychotics with valproate (a histone deacetylase inhibitor) in the treatment of psychosis (expressed by schizophrenia or bipolar disorder patients) are unknown. This prompted us to investigate whether the beneficial action of this combination results from a modification of histone tail covalent esterification or is secondary to specific chromatin remodeling. The results suggest that clozapine, or sulpiride associated with valproate, by increasing DNA demethylation with an unknown mechanism, causes a chromatin remodeling that brings about a beneficial change in the epigenetic GABAergic dysfunction typical of schizophrenia and bipolar disorder patients.

Download full-text

Full-text

Available from: Dennis Robert Grayson, Jun 17, 2015
0 Followers
 · 
133 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that epigenetic mechanisms play a role in psychiatric diseases. In this study, we considered rats with neonatal ventral hippocampal lesions (NVHL) that are currently used for modeling neurodevelopmental aspects of schizophrenia. Contribution of epigenetic regulation to the effects of the lesion was investigated, using a histone deacetylase (HDAC) inhibitor. Lesioned or sham-operated rats were treated with the general HDAC inhibitor phenylbutyrate, which was injected daily from the day after surgery until adulthood. Changes in the volume of the lesion were monitored by magnetic resonance imaging (MRI). Anxiety was analyzed in the Plus Maze Test. Hypersensitivity of the dopaminergic system was evaluated by measuring the locomotor response to apomorphine. An associative conditioning test rewarded with food was used to evaluate learning abilities. The volume of the lesions expanded long after surgery, independently of the treatment, as assessed by MRI. Removal of the ventral hippocampus reduced anxiety, and this remained unchanged when animals were treated with phenylbutyrate. In contrast, NVHL rats' hypersensitivity to apomorphine and deterioration of the associative learning were reduced by the treatment. Global HDAC activity, which was increased in the prefrontal cortex of lesioned non-treated rats, was found to be reversed by HDAC inhibition. The study provides evidence that chromatin remodeling may be useful for limiting behavioral consequences due to lesioning of the ventral hippocampus at an early age. This represents a novel approach for treating disorders resulting from insults occurring during brain development.
    Frontiers in Psychiatry 01/2011; 1:153. DOI:10.3389/fpsyt.2010.00153
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Psychiatric disorders are among the most debilitating of all medical illnesses. Whilst there are drugs that can be used to treat these disorders, they give sub-optimal recovery in many people and a significant number of individuals do not respond to any treatments and remain treatment resistant. Surprisingly, the mechanism by which psychotropic drugs cause their therapeutic benefits remain unknown but likely involves the underlying molecular pathways affected by the drugs. Hence, in this review, we have focused on recent findings on the molecular mechanism affected by antipsychotic, mood stabilizing and antidepressant drugs at the levels of epigenetics, intracellular signalling cascades and microRNAs. We posit that understanding these important interactions will result in a better understanding of how these drugs act which in turn may aid in considering how to develop drugs with better efficacy or increased therapeutic reach.
    Clinical Psychopharmacology and Neuroscience 08/2014; 12(2):94-110. DOI:10.9758/cpn.2014.12.2.94