B cell responses to the 2011/12-influenza vaccine in the aged

The Wistar Institute, Philadelphia, PA 19104, USA
Aging (Impact Factor: 6.43). 03/2013; 5(3):209-226.
Source: PubMed


Antibody and B cell responses to influenza A viruses were measured over a period of 2 months in 30 aged and 15 middle-aged individuals following vaccination with the 2011/12 trivalent inactivated influenza vaccine by micro-neutralization assays, ELISAs, ELISpot assays and cell surface staining with lineage-defining antibodies followed by multicolor flow cytometry. Both cohorts developed comparable antibody responses to the H3N2 virus of the vaccine while responses to the H1N1 virus were compromised in the aged. ELISpot assays of peripheral blood mononuclear cells (PBMCs) gave comparable results for the two cohorts. Analysis by flow cytometry upon staining of CD19+IgD-CD20- PBMCs with antibodies to CD27 and CD38 showed markedly reduced increases of such cells following vaccination in the aged. Additional analysis of cells from a subset of 10 younger and 10 aged individuals indicated that in the aged a portion of IgG producing cells lose expression of CD27 and reduce expression of CD38.

Download full-text


Available from: Raj Kurupati,
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract B cells play an important role in humoral immunity and antibody production. Use of a B cell ELISPOT assay to quantify antigen-specific B cells can assist other assays to achieve a more complete profile of the humoral immune response after vaccination. We utilized a B cell ELISPOT assay to measure the number of influenza A/H1N1-specific B cells at key timepoints after seasonal influenza vaccination in 106 older adults (50-74 years of age). Blood was drawn from these subjects on Day 0, Day 3, Day 28, and Day 75 after vaccination to represent baseline, early, peak, and late response, respectively, of influenza A/H1N1-specific B cells. A significant increase in A/H1N1-specific B cells (median 36 spot-forming units/SFUs per 200,000 cells, p<0.0001) was seen on Day 28 compared to baseline and Day 3, and this number decreased (23 SFUs, p<0.0001) by Day 75, but not to baseline level. These data suggest that the B cell ELISPOT can be used to profile and monitor the humoral immune responses in older subjects after influenza vaccination, and serve as an immune signature marker.
    Viral immunology 03/2014; 27(2):32-38. DOI:10.1089/vim.2013.0099 · 1.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rate of decline of antibody titers to influenza following infection can affect results of serological surveys, and may explain re-infection and recurrent epidemics by the same strain. We followed up a cohort who seroconverted on hemagglutination inhibition (HI) antibody titers (≥4-fold increase) to pandemic influenza A(H1N1)pdm09 during a seroincidence study in 2009. Along with the pre-epidemic sample, and the sample from 2009 with the highest HI titer between August and October 2009 (A), two additional blood samples obtained in April 2010 and September 2010 (B and C) were assayed for antibodies to A(H1N1)pdm09 by both HI and virus microneutralization (MN) assays. We analyzed pair-wise mean-fold change in titers and the proportion with HI titers ≥ 40 and MN ≥ 160 (which correlated with a HI titer of 40 in our assays) at the 3 time-points following seroconversion. A total of 67 participants contributed 3 samples each. From the highest HI titer in 2009 to the last sample in 2010, 2 participants showed increase in titers (by HI and MN), while 63 (94%) and 49 (73%) had reduction in HI and MN titers, respectively. Titers by both assays decreased significantly; while 70.8% and 72.3% of subjects had titers of ≥ 40 and ≥ 160 by HI and MN in 2009, these percentages decreased to 13.9% and 36.9% by September 2010. In 6 participants aged 55 years and older, the decrease was significantly greater than in those aged below 55, so that none of the elderly had HI titers ≥ 40 nor MN titers ≥ 160 by the final sample. Due to this decline in titers, only 23 (35%) of the 65 participants who seroconverted on HI in sample A were found to seroconvert between the pre-epidemic sample and sample C, compared to 53 (90%) of the 59 who seroconverted on MN on Sample A. We observed marked reduction in titers 1 year after seroconversion by HI, and to a lesser extent by MN. Our findings have implications for re-infections, recurrent epidemics, vaccination strategies, and for cohort studies measuring infection rates by seroconversion.
    BMC Infectious Diseases 07/2014; 14(1):414. DOI:10.1186/1471-2334-14-414 · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although influenza causes significant morbidity and mortality in the elderly, the factors underlying the reduced vaccine immunogenicity and efficacy in this age group are not completely understood. Age and immunosenescence factors, and their impact on humoral immunity after influenza vaccination, are of growing interest for the development of better vaccines for the elderly. We assessed associations between age and immunosenescence markers (T cell receptor rearrangement excision circles - TREC content, peripheral white blood cell telomerase - TERT expression and CD28 expression on T cells) and influenza A/H1N1 vaccine-induced measures of humoral immunity in 106 older subjects at baseline and three timepoints post-vaccination. TERT activity (TERT mRNA expression) was significantly positively correlated with the observed increase in the influenza-specific memory B cell ELISPOT response at Day 28 compared to baseline (p-value=0.025). TREC levels were positively correlated with the baseline and early (Day 3) influenza A/H1N1-specific memory B cell ELISPOT response (p-value=0.042 and p-value=0.035, respectively). The expression and/or expression change of CD28 on CD4+ and/or CD8+ T cells at baseline and Day 3 was positively correlated with the influenza A/H1N1-specific memory B cell ELISPOT response at baseline, Day 28 and Day 75 post-vaccination. In a multivariable analysis, the peak antibody response (HAI and/or VNA at Day 28) was negatively associated with age, the percentage of CD8+CD28low T cells, IgD+CD27- naïve B cells, and percentage overall CD20- B cells and plasmablasts, measured at Day 3 post-vaccination. The early change in influenza-specific memory B cell ELISPOT response was positively correlated with the observed increase in influenza A/H1N1-specific HAI antibodies at Day 28 and Day 75 relative to baseline (p-value=0.007 and p-value=0.005, respectively). Our data suggest that influenza-specific humoral immunity is significantly influenced by age, and that specific markers of immunosenescence (e.g., the baseline/early expression of CD28 on CD4+ and/or CD8+ T cells and T cell immune abnormalities) are correlated with different humoral immune response outcomes observed after vaccination in older individuals, and thus can be potentially used to predict vaccine immunogenicity.
    PLoS ONE 03/2015; 10(3):e0122282. DOI:10.1371/journal.pone.0122282 · 3.23 Impact Factor
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.