Neuromelanin MRI in a family with mitochondrial parkinsonism harboring a Y955C mutation in POLG1

Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan.
Parkinsonism & Related Disorders (Impact Factor: 3.97). 05/2013; 19(9). DOI: 10.1016/j.parkreldis.2013.04.011
Source: PubMed


Progressive external ophthalmoplegia (PEO) and parkinsonism can be caused by genetic mutations that affect mitochondrial DNA (mtDNA) maintenance. We characterized parkinsonism in a family with dominantly inherited PEO.

We conducted clinical, histological and genetic analyses on two affected members suffering from PEO and parkinsonism, and reviewed the cases in the literature. To clarify parkinsonism related to multiple mtDNA deletions, we used 3-T neuromelanin magnetic resonance imaging (MRI) to assess signal changes in the substantia nigra (SN) and locus ceruleus (LC) in our patients, and compared the results to those observed in idiopathic Parkinson's disease (iPD) (n = 35).

We report the first case of a Japanese family harboring a heterozygous p.Y955C mutation in POLG1. The clinical features of parkinsonism related to the Y955C mutation in a total of 16 patients, including our two cases, are indistinguishable from iPD. However, neuromelanin MRI showed a distinct pattern in our cases compared to iPD. The neuromelanin imaging results were consistent with the neuropathological findings reported in cases of POLG1 mutations, in which neurons of the SN were profoundly affected while those in the LC were preserved.

Our results suggest that 3-T neuromelanin MRI may be useful for differentiating POLG1 mutation-associated parkinsonism from iPD, and that POLG1 mutations may cause selective neuronal loss in the SN via a mechanism different from that of iPD.

1 Follower
29 Reads
  • Source
    • "Interestingly , all of these conditions are considered mitochondrial parkinsonism. The signal intensity changes we observed on neuromelanin imaging in patients with mutations in POLG1 or Parkin provided further evidence that neurons in the SN are profoundly affected while those in the LC are relatively preserved , consistent with the neuropathological findings in each disease (Mukai et al., 2013). In contrast, postmortem neuropathological findings in patients with mutations in alpha-synuclein or LRRK2 showed severe neuronal loss in the LC as well as in the SN, results similar to those in patients with IPD (Poulopoulos et al., 2012). "

    Neural Regeneration Research 04/2014; 9(7):759-60. DOI:10.4103/1673-5374.131583 · 0.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple mitochondrial DNA (mtDNA) deletions usually occur secondarily to a mutation in one of the enzymes involved in mtDNA maintenance, such as polymerase γ, which is encoded by the nuclear polymerase γ1 gene (POLG1) and POLG2. Patients with multiple mtDNA deletion disorders show clinical heterogeneity of symptoms, in addition to usually seen progressive external ophthalmoplegia (PEO). We conducted clinical, histological and genetic analyses of two affected sisters in a family with the autosomal dominant inheritance pattern of PEO. A 73-year-old woman (patient 1) with congenital hypogonadism and PEO developed L-dopa responsive parkinsonism about the age of 60. Neurological examination revealed mild proximal muscle weakness and polyneuropathy too. Her 69-year-old sister (patient 2) also showed PEO, parkinsonism and polyneuropathy. Histopathological studies of biopsied muscle specimens from patient 1 revealed numerous ragged red fibers as well as fibers with increased succinate dehydrogenase activity and decreased cytochrome c oxidase activity. Multiple mtDNA deletions were detected, both by Southern blot and long-range PCR assays of total DNA from the biopsied muscle specimens. A systemic mutational analysis in both sisters revealed a heterozygous p.Y955C (c.2864A>G) mutation in POLG1. This is the first Japanese family identified with this mutation. We reviewed cases with this mutation highlighting a wide phenotypic spectrum of this disorder.
    Rinsho shinkeigaku = Clinical neurology 05/2014; 54(5):417-22. DOI:10.5692/clinicalneurol.54.417
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative MRI of neuromelanin (NM) containing structures (referred to as NM-MRI) in the brainstem, namely the locus coeruleus (LC) and substantia nigra (SN), may assist with the early detection of Parkinson's disease (PD) and Alzheimer's disease (AD) as well as differential diagnosis in the early disease stages. In this study, two gradient echo (GRE) sequences with magnetization transfer contrast (MTC) preparation pulses were developed to simultaneously image the LC and SN. This has been a challenge with NM-MRI techniques used in previous studies due to the relatively high specific absorption rate (SAR) induced by these techniques. In addition, a semi-automated quantitative analysis scheme was applied to estimate volumes and contrast-to-noise ratios (CNR) of the LC and SN based on segmentation of both structures. Compared to a T1-weighted turbo spin echo (TSE) sequence typically used for simultaneous imaging of the LC and SN, the two GRE-MTC sequences exhibited improved performance in terms of higher sensitivity (in CNR) in imaging the SN and lower SAR during the scans. A multiple-measurement protocol was adopted as well, so that motion degraded measurements could be removed and artifacts associated with motion corrected. The presented approach has demonstrated advantages in imaging acquisition (lower SAR and higher sensitivity), imaging pre-processing (with motion correction) and quantitative image analysis (segmentation-based estimation of volume and CNR) as compared with existing NM-MRI approaches. This approach has potential for detection and monitoring of neurodegeneration in LC and SN in disease states including AD and PD.
    Magnetic Resonance Imaging 07/2014; 32(10). DOI:10.1016/j.mri.2014.07.003 · 2.09 Impact Factor
Show more

Similar Publications