Article

Vision in the palm of your hand.

Department of Psychology, Trent University, Peterborough, Ontario, Canada.
Neuropsychologia (Impact Factor: 3.48). 12/2008; 47(6):1621-6. DOI: 10.1016/j.neuropsychologia.2008.11.021
Source: PubMed

ABSTRACT Here we show that pointing movements made to visual targets projected onto the palm of the hand are more precise and accurate than those made to targets projected onto back of the hand. This advantage may be related to the fact that the number of cortical bimodal neurons coding both visual and tactile stimuli increases with tactile receptor density, which is known to be higher in glabrous than in hairy skin.

0 Bookmarks
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention operates in the space near the hands with unique, action-related priorities. Here, we examined how attention treats objects on the hands themselves. We tested two hypotheses. First, attention may treat stimuli on the hands like stimuli near the hands, as though the surface of the hands were the proximal case of near-hand space. Alternatively, we proposed that the surface of the hands may be attentionally distinct from the surrounding space. Specifically, we predicted that attention should be slow to orient toward the hands in order to remain entrained to near-hand space, where the targets of actions are usually located. In four experiments, we observed delayed orienting of attention on the hands compared to orienting attention near or far from the hands. Similar delayed orienting was also found for tools connected to the body compared to tools disconnected from the body. These results support our second hypothesis: attention operates differently on the functional surfaces of the hand. We suggest this effect serves a functional role in the execution of manual actions.
    Cognition 10/2014; 133(1):211–225. · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visual targets can be processed more quickly and reliably when a hand is placed near the target. Both unimodal and bimodal representations of hands are largely lateralized to the contralateral hemisphere, and since each hemisphere demonstrates specialized cognitive processing, it is possible that targets appearing near the left hand may be processed differently than targets appearing near the right hand. The purpose of this study was to determine whether visual processing near the left and right hands interacts with hemispheric specialization. We presented hierarchical-letter stimuli (e.g., small characters used as local elements to compose large characters at the global level) near the left or right hands separately and instructed participants to discriminate the presence of target letters (X and O) from non-target letters (T and U) at either the global or local levels as quickly as possible. Targets appeared at either the global or local level of the display, at both levels, or were absent from the display; participants made foot-press responses. When discriminating target presence at the global level, participants responded more quickly to stimuli presented near the left hand than near either the right hand or in the no-hand condition. Hand presence did not influence target discrimination at the local level. Our interpretation is that left-hand presence may help participants discriminate global information, a right hemisphere (RH) process, and that the left hand may influence visual processing in a way that is distinct from the right hand.
    Frontiers in Psychology 01/2013; 4:793. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of visual search experiments conducted by Abrams et al. (2008) indicates that disengagement of visual attention is slowed when the array of objects that are to be searched are close to the hands (hands on the monitor) than if they are not close to the hands (hands in the lap). These experiments establish the impact one's hands can have on visual attentional processing. In the current paper we more closely examine these two hand postures with the goal of pinpointing which characteristics are crucial for the observed differences in attentional processing. Specifically, in a set of 4 experiments we investigated additional hand postures and additional modes of response to address this goal. We replicated the original Abrams et al. (2008) effect when only the two original postures were used; however, surprisingly, the effect was extinguished with the new range of postures and response modes, and this extinction persisted across different populations (German and English students), and different experimental hardware. Furthermore, analyses indicated that it is unlikely that the extinction of the effect was caused by increased practice due to additional blocks of trials or by an increased probability that participants were able to guess the purpose of the experiment. As such our results suggest that in addition to the nature of the postures of the hand, the number of postures is a further important factor that influences the impact the hands have on visual processing.
    Frontiers in Psychology 01/2013; 4:858. · 2.80 Impact Factor

Full-text (2 Sources)

View
101 Downloads
Available from
Jun 10, 2014