Transcriptional dynamics of endodermal organ formation.

Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Developmental Dynamics (Impact Factor: 2.67). 01/2009; 238(1):29-42. DOI: 10.1002/dvdy.21810
Source: PubMed

ABSTRACT Although endodermal organs including the liver, pancreas, and intestine are of significant therapeutic interest, the mechanism by which the endoderm is divided into organ domains during embryogenesis is not well understood. To better understand this process, global gene expression profiling was performed on early endodermal organ domains. This global analysis was followed up by dynamic immunofluorescence analysis of key transcription factors, uncovering novel expression patterns as well as cell surface proteins that allow prospective isolation of specific endodermal organ domains. Additionally, a repressive interaction between Cdx2 and Sox2 was found to occur at the prospective stomach-intestine border, with the hepatic and pancreatic domains forming at this boundary, and Hlxb9 was revealed to have graded expression along the dorsal-ventral axis. These results contribute to understanding the mechanism of endodermal organogenesis and should assist efforts to replicate this process using pluripotent stem cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We highlight some of the major recent advances in characterizing human pancreas development and endocrine cell differentiation. Extensive research efforts have helped to define crucial events in the mouse pancreas organogenesis. Information gained from these studies was used to develop human embryonic stem cell (hESC) differentiation protocols with the goal of generating functional glucose-responsive, insulin-producing human β-cells. In spite of remarkable progress in hESC differentiation, current protocols based on mouse developmental biology can produce human β-cells only in vivo. New differentiation markers and recently generated reagents may provide an unprecedented opportunity to develop a high-density expression map of human fetal pancreas and pancreatic islets that could serve as a reference point for in vitro hESC differentiation. Integrating an increased knowledge of human pancreas development into hESC differentiation protocols has the potential to greatly advance our ability to generate functional insulin-producing cells for β-cell replacement therapy.
    Current opinion in endocrinology, diabetes, and obesity 04/2014; 21(2):77-82. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. Here, using an endogenous LGR5-GFP reporter, we derived adult stem cells from hPSCs that gave rise to functional human intestinal tissue comprising all major cell types of the intestine. Histological and functional analyses revealed that such human organoid cultures could be derived with high purity and with a composition and morphology similar to those of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. This adult stem cell system provides a platform for studying human intestinal disease in vitro using genetically engineered hPSCs.
    Stem cell reports. 06/2014; 2(6):838-52.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells.
    Cell. 08/2014; 158(4):889-902.