Fast 3D 1H MRSI of the corticospinal tract in pediatric brain

School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea.
Journal of Magnetic Resonance Imaging (Impact Factor: 3.21). 01/2009; 29(1):1-6. DOI: 10.1002/jmri.21394
Source: PubMed


To develop a (1)H magnetic resonance spectroscopic imaging (MRSI) sequence that can be used to image infants/children at 3T and by combining it with diffusion tensor imaging (DTI) tractography, extract relevant metabolic information corresponding to the corticospinal tract (CST).
A fast 3D MRSI sequence was developed for pediatric neuroimaging at 3T using spiral k-space readout and dual band RF pulses (32 x 32 x 8 cm field of view [FOV], 1 cc iso-resolution, TR/TE = 1500/130, 6:24 minute scan). Using DTI tractography to identify the motor tracts, spectra were extracted from the CSTs and quantified. Initial data from infants/children with suspected motor delay (n = 5) and age-matched controls (n = 3) were collected and N-acetylaspartate (NAA) ratios were quantified.
The average signal-to-noise ratio of the NAA peak from the studies was approximately 22. Metabolite profiles were successfully acquired from the CST by using DTI tractography. Decreased NAA ratios in those with motor delay compared to controls of approximately 10% at the CST were observed.
A fast and robust 3D MRSI technique targeted for pediatric neuroimaging has been developed. By combining with DTI tractography, metabolic information from the CSTs can be retrieved and estimated. By combining DTI and 3D MRSI, spectral information from various tracts can be obtained and processed.

Download full-text


Available from: Daniel M Spielman, Oct 01, 2014
27 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging has been widely used noninvasively for pediatric neuroimaging for more than a decade. More recently, with advances in computing, functional techniques for imaging water diffusion, cellular metabolite levels, and blood flow are becoming available. Magnetic resonance spectroscopy imaging (MRSI) offers a snapshot of the metabolic status in the tissue of interest. It is complementary to the more traditionally used anatomic imaging for diagnoses of various abnormalities. This review describes the physical basis of proton MRSI, summarizes currently available techniques and their applications, highlights challenges of performing MRSI in the pediatric population, and previews the newest techniques currently on the horizon.
    Seminars in perinatology 02/2010; 34(1):20-7. DOI:10.1053/j.semperi.2009.10.003 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To improve clinical three-dimensional (3D) MR spectroscopic imaging with more accurate localization and faster acquisition schemes. Institutional review board approval and patient informed consent were obtained. Data were acquired with a 3-T MR imager and a 32-channel head coil in phantoms, five healthy volunteers, and five patients with glioblastoma. Excitation was performed with localized adiabatic spin-echo refocusing (LASER) by using adiabatic gradient-offset independent adiabaticity wideband uniform rate and smooth truncation (GOIA-W[16,4]) pulses with 3.5-msec duration, 20-kHz bandwidth, 0.81-kHz amplitude, and 45-msec echo time. Interleaved constant-density spirals simultaneously encoded one frequency and two spatial dimensions. Conventional phase encoding (PE) (1-cm3 voxels) was performed after LASER excitation and was the reference standard. Spectra acquired with spiral encoding at similar and higher spatial resolution and with shorter imaging time were compared with those acquired with PE. Metabolite levels were fitted with software, and Bland-Altman analysis was performed. Clinical 3D MR spectroscopic images were acquired four times faster with spiral protocols than with the elliptical PE protocol at low spatial resolution (1 cm3). Higher-spatial-resolution images (0.39 cm3) were acquired twice as fast with spiral protocols compared with the low-spatial-resolution elliptical PE protocol. A minimum signal-to-noise ratio (SNR) of 5 was obtained with spiral protocols under these conditions and was considered clinically adequate to reliably distinguish metabolites from noise. The apparent SNR loss was not linear with decreasing voxel sizes because of longer local T2* times. Improvement of spectral line width from 4.8 Hz to 3.5 Hz was observed at high spatial resolution. The Bland-Altman agreement between spiral and PE data is characterized by narrow 95% confidence intervals for their differences (0.12, 0.18 of their means). GOIA-W(16,4) pulses minimize chemical-shift displacement error to 2.1%, reduce nonuniformity of excitation to 5%, and eliminate the need for outer volume suppression. The proposed adiabatic spiral 3D MR spectroscopic imaging sequence can be performed in a standard clinical MR environment. Improvements in image quality and imaging time could enable more routine acquisition of spectroscopic data than is possible with current pulse sequences.
    Radiology 12/2011; 262(2):647-61. DOI:10.1148/radiol.11110277 · 6.87 Impact Factor