Article

An optimised method for cryopreservation of human hepatocytes.

Institute of Liver Studies, King's College London School of Medicine London, UK.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 02/2009; 481:25-34. DOI: 10.1007/978-1-59745-201-4_3
Source: PubMed

ABSTRACT Successful cryopreservation of hepatocytes is essential for their use in hepatocyte transplantation. Cryopreservation allows hepatocytes to be available for emergency treatment of acute liver failure and also for planned treatment of liver-based metabolic disorders. In addition, cryopreservation of human hepatocytes can facilitate their use in metabolism and toxicity studies. Cryopreservation can adversely affect the viability and function, especially reduce the attachment efficiency, of hepatocytes on thawing.The cryopreservation process can be divided into steps so that improvements can be made on the 'standard' protocols that are followed in some laboratories. These steps are as follows: pre-incubation of cells; freezing solution, cryoprotectants and cytoprotectants; freezing process; storage; thawing; post-thawing culture. This chapter presents an optimised protocol for cryopreservation of human hepatocytes as developed at King's College Hospital.

1 Bookmark
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Orthotopic liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a donor shortage. Liver tissue engineering may offer a promising strategy to solve this problem by providing transplantable, bioartificial livers. Diverse types of cells, biomaterials, and growth factor delivery systems have been tested for efficient regeneration of liver tissues that possess hepatic functions comparable to native livers. This article reviews recent advances in liver tissue engineering and describes cell sources, biomaterial scaffolds, and growth factor delivery systems that are currently being used to improve the regenerative potential of tissue-engineered livers.
    Biotechnology and Bioprocess Engineering 17(3). · 1.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the mechanisms involved in a possible modulator role of interleukin (IL)-6 signalling on CYR61-CTGF-NOV (CCN) 2/connective tissue growth factor (CTGF) expression in hepatocytes (PC) and to look for a relation between serum concentrations of these two parameters in patients with acute inflammation. Expression of CCN2/CTGF, p-STAT3, p-Smad3/1 and p-Smad2 was examined in primary freshly isolated rat or cryo-preserved human PC exposed to various stimuli by Western blotting, electrophoretic mobility shift assay (EMSA), reporter-gene-assays and reverse-transcriptase polymerase chain reaction. IL-6 strongly down-regulated CCN2/CTGF protein and mRNA expression in PC, enhanceable by extracellular presence of the soluble IL-6 receptor gp80, and supported by an inverse relation between IL-6 and CCN2/CTGF concentrations in patients' sera. The inhibition of TGFβ1 driven CCN2/CTGF expression by IL-6 did not involve a modulation of Smad2 (and Smad1/3) signalling. However, the STAT3 SH2 domain binding peptide, a selective inhibitor of STAT3 DNA binding activity, counteracted the inhibitory effect of IL-6 on CCN2/CTGF expression much more pronounced than pyrrolidine-dithiocarbamate, an inhibitor primarily of STAT3 phosphorylation. An EMSA confirmed STAT3 binding to the proposed proximal STAT binding site in the CCN2/CTGF promoter. CCN2/CTGF is identified as a hepatocellular negative acute phase protein which is down-regulated by IL-6 via the STAT3 pathway through interaction on the DNA binding level.
    World Journal of Gastroenterology 01/2011; 17(2):151-63. · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing--thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing--thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing--thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.
    BMC Cell Biology 01/2010; 11:54. · 2.81 Impact Factor

Full-text

Download
0 Downloads
Available from