Article

A line of mice selected for high blood ethanol concentrations shows drinking in the dark to intoxication.

Portland Alcohol Research Center, Portland, Oregon, USA.
Biological psychiatry (Impact Factor: 9.47). 04/2009; 65(8):662-70. DOI: 10.1016/j.biopsych.2008.11.002
Source: PubMed

ABSTRACT Many animal models of alcoholism have targeted aspects of excessive alcohol intake (abuse) and dependence. In the rodent, models aimed at increasing alcohol self-administration have used genetic or environmental manipulations, or their combination. Strictly genetic manipulations (e.g., comparison of inbred strains or targeted mutants, selective breeding) have not yielded rat or mouse genotypes that will regularly and voluntarily drink alcohol to the point of intoxication. Although some behavioral manipulations (e.g., scheduling or limiting access to alcohol, adding a sweetener) will induce mice or rats to drink enough alcohol to become intoxicated, these typically require significant food or water restriction or a long time to develop. We report progress toward the development of a new genetic animal model for high levels of alcohol drinking.
High Drinking in the Dark (HDID-1) mice have been selectively bred for high blood ethanol concentrations (BEC, ideally exceeding 100 mg%) resulting from the ingestion of a 20% alcohol solution.
After 11 generations of selection, more than 56% of the population now exceeds this BEC after a 4-hour drinking session in which a single bottle containing 20% ethanol is available. The dose of ethanol consumed also produced quantifiable signs of intoxication.
These mice will be useful for mechanistic studies of the biological and genetic contributions to excessive drinking.

Download full-text

Full-text

Available from: Pamela Metten, Jul 06, 2015
0 Followers
 · 
176 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug-induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
    Behavioral Neuroscience 04/2014; DOI:10.1037/a0036268 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Initial sensitivity to ethanol (EtOH) and the capacity to develop acute functional tolerance (AFT) to its adverse effects may influence the amount of alcohol consumed and may also predict future alcohol use patterns. The current study assessed sensitivity and AFT to the ataxic and hypnotic effects of EtOH in the first replicate of mice (HDID-1) selectively bred for high blood EtOH concentrations (BECs) following limited access to EtOH in the Drinking in the Dark (DID) paradigm. Naïve male and female HDID-1 and HS/Npt mice from the progenitor stock were evaluated in 3 separate experiments. In Experiments 1 and 2, EtOH-induced ataxia was assessed using the static dowel task. In Experiment 3, EtOH-induced hypnosis was assessed by using modified restraint tubes to measure the loss of righting reflex (LORR). HDID-1 mice exhibited reduced initial sensitivity to both EtOH-induced ataxia (p < 0.001) and hypnosis (p < 0.05) relative to HS/Npt mice. AFT was calculated by subtracting the BEC at loss of function from the BEC at recovery (Experiments 1 and 3) or by subtracting BEC at an initial recovery from the BEC at a second recovery following an additional alcohol dose (Experiment 2). The dowel test yielded no line differences in AFT, but HS/Npt mice developed slightly greater AFT to EtOH-induced LORR than HDID-1 (p < 0.05). These results suggest that HDID-1 mice exhibit aspects of blunted ataxic and hypnotic sensitivity to EtOH which may influence their high EtOH intake via DID, but do not display widely different development of AFT. These findings differ from previous findings with the high alcohol-preferring (HAP) selected mouse lines, suggesting that genetic predisposition for binge, versus other forms of excessive alcohol consumption, is associated with unique responses to EtOH-induced motor incoordination.
    Alcoholism Clinical and Experimental Research 02/2014; DOI:10.1111/acer.12385 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the fact that binge alcohol drinking (intake resulting in blood alcohol concentrations80 mg% within a 2-h period) is the most prevalent form of alcohol use disorders (AUD), a large knowledge gap exists regarding how this form of AUD impacts neural circuits mediating alcohol reinforcement. The present study employed integrative approaches to examine the functional relevance of binge drinking-induced changes in glutamate receptors, their associated scaffolding, and certain signaling molecules within the central nucleus of the amygdala (CeA). A 30-day history of binge alcohol drinking (eg, 4-5 g/kg/2-h) elevated CeA levels of mGluR1, GluN2B, Homer2a/b, and phospholipase C (PLC) β3, without significantly altering protein expression within the adjacent basolateral amygdala. An intra-CeA infusion of mGluR1, mGluR5 and PLC inhibitors all dose-dependently reduced binge intake, without influencing sucrose drinking. The effects of co-infusing mGluR1 and PLC inhibitors were additive, while those of co-inhibiting mGluR5 and PLC were not, indicating that the efficacy of mGluR1 blockade to lower binge intake involves a pathway independent of PLC activation. The efficacy of mGluR1, mGluR5 and PLC inhibitors to reduce binge intake depended upon intact Homer2 expression as revealed through neuropharmacological studies of Homer2 null mutant mice. Collectively, these data indicate binge alcohol-induced increases in Group1 mGluR signaling within the CeA as a neuroadaptation maintaining excessive alcohol intake, which may contribute to the propensity to binge drink.Neuropsychopharmacology accepted article preview online, 21 August 2013. doi:10.1038/npp.2013.214.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 08/2013; 39(2). DOI:10.1038/npp.2013.214 · 7.83 Impact Factor