A line of mice selected for high blood ethanol concentrations shows drinking in the dark to intoxication.

Portland Alcohol Research Center, Portland, Oregon, USA.
Biological psychiatry (Impact Factor: 8.93). 04/2009; 65(8):662-70. DOI: 10.1016/j.biopsych.2008.11.002
Source: PubMed

ABSTRACT Many animal models of alcoholism have targeted aspects of excessive alcohol intake (abuse) and dependence. In the rodent, models aimed at increasing alcohol self-administration have used genetic or environmental manipulations, or their combination. Strictly genetic manipulations (e.g., comparison of inbred strains or targeted mutants, selective breeding) have not yielded rat or mouse genotypes that will regularly and voluntarily drink alcohol to the point of intoxication. Although some behavioral manipulations (e.g., scheduling or limiting access to alcohol, adding a sweetener) will induce mice or rats to drink enough alcohol to become intoxicated, these typically require significant food or water restriction or a long time to develop. We report progress toward the development of a new genetic animal model for high levels of alcohol drinking.
High Drinking in the Dark (HDID-1) mice have been selectively bred for high blood ethanol concentrations (BEC, ideally exceeding 100 mg%) resulting from the ingestion of a 20% alcohol solution.
After 11 generations of selection, more than 56% of the population now exceeds this BEC after a 4-hour drinking session in which a single bottle containing 20% ethanol is available. The dose of ethanol consumed also produced quantifiable signs of intoxication.
These mice will be useful for mechanistic studies of the biological and genetic contributions to excessive drinking.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation sequencing experiments have demonstrated great potential for transcriptome profiling. While transcriptome sequencing greatly increases the level of biological detail, system-level analysis of these high-dimensional datasets is becoming essential. We illustrate gene network approaches to the analysis of transcriptional data, with particular focus on the advantage of RNA-Seq technology compared to microarray platforms. We introduce a novel methodology for constructing cosplicing networks, based on distance measures combined with matrix correlations. We find that the cosplicing network is distinct and complementary to the coexpression network, although it shares the scale-free properties. In the cosplicing network, we find a set of novel hubs that have unique characteristics distinguishing them from coexpression hubs: they are heavily represented in neurobiological functional pathways and have strong overlap with markers of neurons and neuroglia, long-coding lengths, and high number of both exons and annotated transcripts. We also find that gene networks are plastic in the face of genetic and environmental pressures.
    International Review of Neurobiology 01/2014; 116C:73-93. DOI:10.1016/B978-0-12-801105-8.00004-7 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High ethanol intake is well known to induce both anxiolytic and anxiogenic effects, in correlation with chromatin remodeling in the amygdaloid brain region and deficits in cell proliferation and survival in the hippocampus of rodents. Whether only moderate but chronic ethanol intake in C57BL/6J mice could also have an impact on chromatin remodeling and neuroplasticity was addressed here. Chronic ethanol consumption in a free choice paradigm was found to induce marked changes in the expression of genes implicated in neural development and histone post-translational modifications in the mouse hippocampus. Transcripts encoding neural bHLH activators and those from Bdnf exons II, III and VI were upregulated, whereas those from Bdnf exon VIII and Hdacs were downregulated by ethanol compared with water consumption. These ethanol-induced changes were associated with enrichment in both acetylated H3 at Bdnf promoter PVI and trimethylated H3 at PII and PIII. Conversely, acetylated H3 at PIII and PVIII and trimethylated H3 at PVIII were decreased in ethanol-exposed mice. In parallel, hippocampal brain-derived neurotrophic factor (BDNF) levels and TrkB-mediated neurogenesis in the dentate gyrus were significantly enhanced by ethanol consumption. These results suggest that, in C57BL/6J mice, chronic and moderate ethanol intake produces marked epigenetic changes underlying BDNF overexpression and downstream hippocampal neurogenesis.Molecular Psychiatry advance online publication, 29 April 2014; doi:10.1038/mp.2014.38.
    Molecular Psychiatry 04/2014; DOI:10.1038/mp.2014.38 · 15.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic exposure to alcohol produces changes in the prefrontal cortex that are thought to contribute to the development and maintenance of alcoholism. A large body of literature suggests that stress hormones play a critical role in this process. Here we review the bi-directional relationship between alcohol and stress hormones, and discuss how alcohol acutely stimulates the release of glucocorticoids and induces enduring modifications to neuroendocrine stress circuits during the transition from non-dependent drinking to alcohol dependence. We propose a pathway by which alcohol and stress hormones elicit neuroadaptive changes in prefrontal circuitry that could contribute functionally to a dampened neuroendocrine state and the increased propensity to relapse-a spiraling trajectory that could eventually lead to dependence.
    Neuroscience 07/2014; 277. DOI:10.1016/j.neuroscience.2014.06.053 · 3.33 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014