Article

Hemodynamic effects of PEEP in a porcine model of HCl-induced mild acute lung injury

Laboratory of Medical Investigation LIM08, Faculdade de Medicina, Universidade de São Paulo, Brazil.
Acta Anaesthesiologica Scandinavica (Impact Factor: 2.31). 02/2009; 53(2):190-202. DOI: 10.1111/j.1399-6576.2008.01842.x
Source: PubMed

ABSTRACT Positive end-expiratory pressure (PEEP) and sustained inspiratory insufflations (SI) during acute lung injury (ALI) are suggested to improve oxygenation and respiratory mechanics. We aimed to investigate the hemodynamic effects of PEEP with and without alveolar recruiting maneuver in a mild ALI model induced by inhalation of hydrochloric acid.
Thirty-two pigs were randomly allocated into four groups (Control-PEEP, Control-SI, ALI-PEEP and ALI-SI). ALI was induced by intratracheal instillation of hydrochloric acid. PEEP values were progressively increased and decreased from 5, 10, 15 and 20 cmH2O in all groups. Three SIs maneuvers of 30 cmH2O for 20 s were applied to the assignable groups between each PEEP level. Transesophageal echocardiography (TEE), global hemodynamics, oxygenation indexes and gastric tonometry were measured 5 min after the maneuvers had been concluded and at each established value of PEEP (5, 10, 15 and 20 cmH2O).
The cardiac index, ejection fraction and end-diastolic volume of right ventricle were significantly (P < 0.001) decreased with PEEP in both Control and ALI groups. Left ventricle echocardiography showed a significant decrease in end-diastolic volume at 20 cmH2O of PEEP (P < 0.001). SIs did not exert any significant hemodynamic effects either early (after 5 min) or late (after 3 h).
In a mild ALI model induced by inhalation of hydrochloric acid, significant hemodynamic impairment characterized by cardiac function deterioration occurred during PEEP increment, but SI, probably due to low applied values (30 cmH2O), did not exert further negative hemodynamic effects. PEEP should be used cautiously in ALI caused by acid gastric content inhalation.

0 Followers
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To describe a new murine model of cigarette smoke-induced emphysema. Twenty-four male Wistar rats were divided into two groups: the cigarette smoke group, comprising 12 rats exposed to smoke from 12 commercial filter cigarettes three times a day (a total of 36 cigarettes per day) every day for 30 weeks; and the control group, comprising 12 rats exposed to room air three times a day every day for 30 weeks. Lung function was assessed by mechanical ventilation, and emphysema was morphometrically assessed by measurement of the mean linear intercept (Lm). The mean weight gain was significantly (approximately ten times) lower in the cigarette smoke group than in the control group. The Lm was 25.0% higher in the cigarette smoke group. There was a trend toward worsening of lung function parameters in the cigarette smoke group. The new murine model of cigarette smoke-induced emphysema and the methodology employed in the present study are effective and reproducible, representing a promising and economically viable option for use in studies investigating the pathophysiology of and therapeutic approaches to COPD.
    Jornal brasileiro de pneumologia: publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia 40(1):46-54. DOI:10.1590/S1806-37132014000100007 · 1.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bronchoaspiration results in local deterioration of lung function through direct damage and/or indirect systemic effects related to neurohumoral pathways. We distinguished these effects by selectively intubating the two main bronchi in pigs while a PEEP of 4 or 10 cmH2O was maintained. Gastric juice was instilled only into the right lung. Lung mechanical and ventilation defects were assessed by measuring unilateral pulmonary input impedance (ZL,s) and the third phase slope of the capnogram (SIII) for each lung side separately before the aspiration and for 120 min thereafter. Marked transient elevations in ZL,s parameters and SIII were observed in the affected lung after aspiration. Elevating PEEP did not affect these responses in the ZL,s parameters, whereas it prevented the SIII increases. None of these indices changed in the intact left lung. These findings furnish evidence of the predominance of the local direct damage over the indirect systemic effects in the development of the deterioration of lung function, and demonstrate the benefit of an initially elevated PEEP following aspiration.
    Respiratory Physiology & Neurobiology 05/2014; 199(1 August 2014):41–49. DOI:10.1016/j.resp.2014.05.001 · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:: In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. METHODS:: Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. RESULTS:: Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. CONCLUSION:: In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.
    Anesthesiology 11/2012; 117(6). DOI:10.1097/ALN.0b013e31827542aa · 6.17 Impact Factor