MicroRNAs-Mediators of myometrial contractility during pregnancy and labour

Department of Pediatrics, Children's Medical Center Dallas, 1935 Medical District Drive, Dallas, TX 75235, USA.
Nature Reviews Endocrinology (Impact Factor: 13.28). 05/2013; 9(7). DOI: 10.1038/nrendo.2013.96
Source: PubMed


The maintenance of myometrial quiescence and initiation of contractility, which lead to parturition at term and preterm, involve a shifting equilibrium between anti-inflammatory and proinflammatory signalling pathways. Progesterone (P4), acting through the progesterone receptor (PR), has an essential and multifaceted role in the maintenance of myometrial quiescence. This effect of P4-PR signalling is mediated, in part, by its anti-inflammatory actions and capacity to repress the expression of genes that encode proinflammatory cytokines, such as IL-1 and IL-6, and contraction-associated proteins, such as OXTR, GJA1 and PTGS2. By contrast, increased expression of genes that ultimately lead to parturition is mediated by enhanced inflammatory and estradiol-17β (E2) and estrogen receptor α signalling, which reduce PR function, thus further intensifying the inflammatory response. To obtain a more complete understanding of the molecular events that underlie the transition of the pregnant myometrium from a refractory to a contractile state, the roles of microRNAs, their targets, and their transcriptional and hormonal regulation have been investigated. This article reviews the actions of the miR-200 family and their P4-regulated targets-the transcription factors ZEB1, ZEB2 and STAT5B-in the pregnant myometrium, as well as the role of miR-199a-3p and miR-214 and their mutual target PTGS2. The central role of ZEB1 as the mediator of the opposing actions of P4 and E2 on myometrial contractility will be highlighted.

29 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Although premature cervical remodeling is involved in preterm birth (PTB), the molecular pathways that are involved have not been elucidated fully. MicroRNAs (miRNAs) that are highly conserved single-stranded noncoding RNAs that play a crucial role in gene regulation have now been identified as important players in disease states. The objective of this study was to determine whether miRNA profiles in cervical cells are different in women who are destined to have a PTB compared with a term birth. Study Design A nested case-control study was performed. With the use of a noninvasive method, cervical cells were obtained at 2 time points in pregnancy. The cervical cell miRNA expression profiles were compared between women who ultimately had a PTB (n = 10) compared with a term birth (n = 10). MiRNA expression profiles were created with the Affymetrix GeneChip miRNA Array. The data were analyzed with the Significance of Analysis of Microarrays and Principle Components Analyses. A false-discovery rate of 20% was used to determine the most differentially expressed miRNAs. Validation was performed with quantitative polymerase chain reaction. In vitro studies were performed to confirm expression and regulation of select miRNAs. Results With a false-discovery rate of 20% of the 5640 miRNAs that were analyzed on the array, 99 miRNAs differed between those with a PTB vs a term birth. Qualitative polymerase chain reaction validated the array findings. In vitro studies confirmed expression of select miRNAs in cervical cells. Conclusion MiRNA profiles in cervical cells may distinguish women who are at risk for PTB months before the outcome. With the large downstream effects of miRNAs on gene expression, these studies provide a new understanding of the processes that are involved in premature cervical remodeling and allow for the discovery of new therapeutic targets.
    American journal of obstetrics and gynecology 03/2014; 210(3):221.e1–221.e11. DOI:10.1016/j.ajog.2013.12.043 · 4.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21-25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. Moreover, miR-141-3p inhibited hMSC proliferation by arresting cells at the G1 phase of the cell cycle. miR-141-3p inhibited osteoblast differentiation of hMSC as evidenced by reduced alkaline phosphatase activity, gene expression and in vitro mineralized matrix formation. Bioinformatic studies, Western blot analysis and 3'UTR reporter assay demonstrated that cell division cycle 25A (CDC25A) is a direct target of miR-141-3p. siRNA-mediated knock-down of CDC25A inhibited hMSC proliferation and osteoblast differentiation. In summary, miR-141-3p acts as a negative regulator of hMSC proliferation and osteoblast differentiation. Targeting miR-141-3p could be used as an anabolic therapy of low bone mass diseases, e.g. osteoporosis.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 06/2014; 1843(9). DOI:10.1016/j.bbamcr.2014.06.004 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preterm birth is associated with 5 to 18% of pregnancies and is a leading cause of infant morbidity and mortality. Spontaneous preterm labor, a syndrome caused by multiple pathologic processes, leads to 70% of preterm births. The prevention and the treatment of preterm labor have been long-standing challenges. We summarize the current understanding of the mechanisms of disease implicated in this condition and review advances relevant to intra-amniotic infection, decidual senescence, and breakdown of maternal-fetal tolerance. The success of progestogen treatment to prevent preterm birth in a subset of patients at risk is a cause for optimism. Solving the mystery of preterm labor, which compromises the health of future generations, is a formidable scientific challenge worthy of investment.
    Science 08/2014; 345(6198):760-765. DOI:10.1126/science.1251816 · 33.61 Impact Factor
Show more