Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation.

Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 01/2009; 28(51):13978-84. DOI: 10.1523/JNEUROSCI.2140-08.2008
Source: PubMed

ABSTRACT Toll-like receptors (TLRs) play important roles in innate immunity. Several TLR family members have recently been shown to be expressed by neurons and glial cells in the adult brain, and may mediate responses of these cells to injury and infection. To address the possibility that TLRs play a functional role in development of the nervous system, we analyzed the expression of TLRs during different stages of mouse brain development and assessed the role of TLRs in cell proliferation. TLR3 protein is present in brain cells in early embryonic stages of development, and in cultured neural stem/progenitor cells (NPC). NPC from TLR3-deficient embryos formed greater numbers of neurospheres compared with neurospheres from wild-type embryos. Numbers of proliferating cells, as assessed by phospho histone H3 and proliferating cell nuclear antigen labeling, were also increased in the developing cortex of TLR3-deficient mice compared with wild-type mice in vivo. Treatment of cultured embryonic cortical neurospheres with a TLR3 ligand (polyIC) significantly reduced proliferating (BrdU-labeled) cells and neurosphere formation in wild type but not TLR3(-/-)-derived NPCs. Our findings reveal a novel role for TLR3 in the negative regulation of NPC proliferation in the developing brain.


Available from: Justin D Lathia, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence suggests that toll-like receptors (TLRs) play an important role in cerebral ischemia-reperfusion injury. The endogenous ligands released from ischemic neurons activate the TLR signaling pathway, resulting in the production of a large number of inflammatory cytokines, thereby causing secondary inflammation damage following cerebral ischemia. However, the preconditioning for minor cerebral ischemia or the preconditioning with TLR ligands can reduce cerebral ischemic injury by regulating the TLR signaling pathway following ischemia in brain tissue (mainly, the inhibition of the TLR4/NF-κB signaling pathway and the enhancement of the interferon regulatory factor-dependent signaling), resulting in TLR ischemic tolerance. Additionally, recent studies found that postconditioning with TLR ligands after cerebral ischemia can also reduce ischemic damage through the regulation of the TLR signaling pathway, showing a significant therapeutic effect against cerebral ischemia. These studies suggest that the ischemic tolerance mediated by TLRs can serve as an important target for the prevention and treatment of cerebral ischemia. On the basis of describing the function and mechanism of TLRs in mediating cerebral ischemic damage, this review focuses on the mechanisms of cerebral ischemic tolerance induced by the preconditioning and postconditioning of TLRs and discusses the clinical application of TLRs for ischemic tolerance.
    Journal of Neuroinflammation 04/2015; 12(1):80. DOI:10.1186/s12974-015-0301-0 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic stroke causes a high rate of deaths and permanent neurological damage in survivors. Ischemic stroke triggers the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1), which activate toll-like receptors (TLRs) and receptor for advanced glycation endproducts (RAGE) in the affected area, leading to an exaggerated inflammatory response and cell death. Both TLRs and RAGE are transmembrane pattern recognition receptors (PRRs) that have been shown to contribute to ischemic stroke-induced brain injury. Intravenous immunoglobulin (IVIg) preparations obtained by fractionating human blood plasma are increasingly being used as an effective therapeutic agent in the treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke has been proposed, but little is known about the direct neuroprotective mechanisms of IVIg. We therefore investigate whether IVIg exerts its beneficial effects on the outcome of neuronal injury by modulating HMGB1-induced TLR and RAGE expressions and activations. Primary cortical neurons were subjected to glucose deprivation or oxygen and glucose deprivation conditions and treated with IVIg and recombinant HMGB1. C57/BL6J mice were subjected to middle cerebral artery occlusion, followed by reperfusion, and IVIg was administered intravenously 3 h after the start of reperfusion. Expression of TLRs, RAGE and downstream signalling proteins in neurons and brain tissues were evaluated by immunoblot. Treatment of cultured neurons with IVIg reduced simulated ischemia-induced TLR2, TLR4, TLR8 and RAGE expressions, pro-apoptotic caspase-3 cleavage and phosphorylation of the cell death-associated kinases such as c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) as well as the p65 subunit of nuclear factor kappa B (NF-κB). These results were recapitulated in an in vivo model of stroke. IVIg treatment also upregulated the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in cortical neurons under ischemic conditions. Finally, IVIg protected neurons against HMGB1-induced neuronal cell death by modulating TLR and RAGE expressions and signalling pathways. Taken together, these results provide a rationale for the potential use of IVIg to target inappropriately activated components of the innate immune system following ischemic stroke.
    Journal of Neuroinflammation 04/2015; 12(1):73. DOI:10.1186/s12974-015-0294-8 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling.
    Scientific Reports 02/2015; 5:8502. DOI:10.1038/srep08502 · 5.08 Impact Factor