Article

Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted?

Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, Plön, Germany.
Parasitology (Impact Factor: 2.35). 01/2009; 136(2):219-30. DOI: 10.1017/S0031182008005271
Source: PubMed

ABSTRACT Many complex life cycle parasites exhibit seasonal transmission between hosts. Expression of parasite traits related to transmission, such as the manipulation of host phenotype, may peak in seasons when transmission is optimal. The acanthocephalan Acanthocephalus lucii is primarily transmitted to its fish definitive host in spring. We assessed whether the parasitic alteration of 2 traits (hiding behaviour and coloration) in the isopod intermediate host was more pronounced at this time of year. Refuge use by infected isopods was lower, relative to uninfected isopods, in spring than in summer or fall. Infected isopods had darker abdomens than uninfected isopods, but this difference did not vary between seasons. The level of host alteration was unaffected by exposing isopods to different light and temperature regimes. In a group of infected isopods kept at 4 degrees C, refuge use decreased from November to May, indicating that reduced hiding in spring develops during winter. Keeping isopods at 16 degrees C instead of 4 degrees C resulted in higher mortality but not accelerated changes in host behaviour. Our results suggest that changes in host and/or parasite age, not environmental conditions, underlie the seasonal alteration of host behaviour, but further work is necessary to determine if this is an adaptive parasite strategy to be transmitted in a particular season.

Download full-text

Full-text

Available from: Dan Benesh, Jul 01, 2015
0 Followers
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many parasites with complex life cycles are known to modify their host phenotype to enhance transmission from the intermediate host to the definitive host. Several earlier studies explored these effects in acanthocephalan and trematode parasites, especially in aquatic ecosystems; however, much less is known about parasite‐mediated alterations of host behavior in terrestrial systems involving nematodes. Here, we address this gap by investigating a trophically transmitted nematode (Pterygodermatites peromysci) that uses a camel cricket (Ceuthophilus pallidipes) as the intermediate host before transmission to the final host, the white‐footed mouse (Peromyscus leucopus). In a laboratory experiment, we quantified the anti‐predatory responses of the cricket intermediate host using simulated predator cues. Results showed a decrease in jumping performance among infected crickets as compared with uninfected crickets, specifically in terms of frequency of jumps and jumping distance. Additionally, the relationship between parasite load and frequency of jumps is negatively correlated with the intensity of infection. These behavioral modifications are likely to increase vulnerability to predation by the definitive host. An analysis of the age‐intensity pattern of infection in natural cricket populations appears to support this hypothesis: parasites accumulate with age, peak at an intermediate age class before the intensity of infection decreases in older age groups. We suggest that older, heavily infected crickets are preferentially removed from the population by predators because of increased vulnerability. These results show that cricket intermediate hosts infected with P. peromysci have diminished jumping performance, which is likely to impair their anti‐predatory behavior and potentially facilitate parasite transmission.
    Ethology 11/2011; 117(11):1019-1026. DOI:10.1111/j.1439-0310.2011.01951.x · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parasites with a complex life cycle are supposed to influence the behaviour of their intermediate host in such a way that the transmission to the final host is enhanced, but reduced to non-hosts. Here, we examined whether the trophically transmitted bird parasite Polymorphus minutus increases the antipredator response of its intermediate host, the freshwater amphipod Gammarus pulex to fish cues, i.e. non-host cues (‘increased host abilities hypothesis’). Aggregation behaviour and reduced activity are assumed to decrease the predation risk of gammarids by fishes. Uninfected G. pulex are known to aggregate in the presence of a fish predator. In the present study, gammarids were allowed to choose either to join a group of conspecifics or to stay solitary (experiment 1) or between two groups differing in infection status (experiment 2), both in the presence or absence of fish odour. The perception of the groups was limited to mainly olfactory cues. Contrary to the ‘increased host abilities hypothesis’, in infected gammarids of experiment 1, fish cues induced similar aggregation behaviour as in their uninfected conspecifics. In experiment 2, uninfected as well as infected gammarids did not significantly discriminate between infected and uninfected groups. Although only uninfected gammarids reduced their activity in the presence of predator cues, infected G. pulex were generally less active than uninfected conspecifics. This might suggest that P. minutus manipulates rather the general anti-predator behaviour than the plastic response to predation risk. KeywordsShoaling-Host-parasite interaction-Invertebrate-Crustacean-Gammarid-Group-Stickleback-Parasitic manipulation-Acanthocephala
    Hydrobiologia 10/2010; 654(1):137-145. DOI:10.1007/s10750-010-0377-6 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For trophically transmitted parasites, transitional larval size is often related to fitness. Larger parasites may have higher establishment success and/or adult fecundity, but prolonged growth in the intermediate host increases the risk of failed transmission via natural host mortality. We investigated the relationship between the larval size of an acanthocephalan (Acanthocephalus lucii) and a trait presumably related to transmission, i.e. altered colouration in the isopod intermediate host. In natural collections, big isopods harboured larger worms and had more modified (darker) abdominal colouration than small hosts. Small isopods infected with a male parasite tended to have darker abdominal pigmentation than those infected with a female, but this difference was absent in larger hosts. Female size increases rapidly with host size, so females may have more to gain than males by remaining in and growing mutually with small hosts. In experimental infections, a large total parasite volume was associated with darker host respiratory operculae, especially when it was distributed among fewer worms. Our results suggest that host pigment alteration increases with parasite size, albeit differently for male and female worms. This may be an adaptive strategy if, as parasites grow, the potential for additional growth decreases and the likelihood of host mortality increases.
    Parasitology 06/2009; 136(8):847-54. DOI:10.1017/S0031182009006180 · 2.35 Impact Factor