Evolutionary origin and phylogenetic analysis of the novel oocyte-specific eukaryotic translation initiation factor 4E in Tetrapoda.

The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
Development Genes and Evolution (Impact Factor: 1.7). 01/2009; 219(2):111-8. DOI: 10.1007/s00427-008-0268-2
Source: PubMed

ABSTRACT The transcriptionally active, growing oocyte accumulates mRNAs essential for early stages of development, the oocyte-to-embryo transition, in a stable, dormant form. Translational repression of mRNAs in eggs of various species is conferred by interactions, either direct or via intermediate proteins, of repressive factors bound to the 3'-untranslated regions with the proteins of the eukaryotic translation initiation factor 4E (eIF4E) family bound to the 5'-cap of the transcripts. Recently, a novel oocyte-specific eIF4E encoded by the Eif41b gene in mammals has been identified by our group. To further investigate this gene, the available cDNA libraries, as well as genome assemblies of nonmammalian vertebrates, were surveyed. This analysis revealed that the Eif4e1b gene arose in Tetrapoda as a result of the ancestral Eif4e locus duplication. Unlike other known proteins of three subfamilies comprising eIF4E family (eIF4E1, eIF4E2, and eIF4E3), cDNA library evidence suggests that Eif41b locus has an oocyte-restricted expression across all classes of Tetrapoda. To further understand the role of eIF4E1B during oocyte maturation, injections of antisense morpholino nucleotides in the X. tropicalis fully-grown stage VI oocytes were performed. The resulted ablation of eIF4E1B protein led to significant acceleration of oocyte maturation after progesterone induction; morpholino-injected oocytes formed the metaphase plate 30 min faster than the control groups. These results suggest that eIF4E1B protein acts as a repressor in translational regulation of maternal mRNAs activated during, and required for, oocyte maturation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates-two of the milestones of reproduction and development-in which animals use contrasting strategies to activate similar pathways. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.
    Molecular Reproduction and Development 02/2013; · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In addition to the canonical eIF4E cap-binding protein, eukaryotes have evolved sequence-related variants with distinct features, some of which have been shown to negatively regulate translation of particular mRNAs, but which remain poorly characterised. Mammalian eIF4E proteins have been divided into three classes, with class I representing the canonical cap-binding protein eIF4E1. eIF4E1 binds eIF4G to initiate translation, and other eIF4E-binding proteins such as 4E-BPs and 4E-T prevent this interaction by binding eIF4E1 with the same consensus sequence YX 4Lϕ. We investigate here the interaction of human eIF4E2 (4EHP), a class II eIF4E protein, which binds the cap weakly, with eIF4E-transporter protein, 4E-T. We first show that ratios of eIF4E1:4E-T range from 50:1 to 15:1 in HeLa and HEK293 cells respectively, while those of eIF4E2:4E-T vary from 6:1 to 3:1. We next provide evidence that eIF4E2 binds 4E-T in the yeast two hybrid assay, as well as in pull-down assays and by recruitment to P-bodies in mammalian cells. We also show that while both eIF4E1 and eIF4E2 bind 4E-T via the canonical YX 4Lϕ sequence, nearby downstream sequences also influence eIF4E:4E-T interactions. Indirect immunofluorescence was used to demonstrate that eIF4E2, normally homogeneously localised in the cytoplasm, does not redistribute to stress granules in arsenite-treated cells, nor to P-bodies in Actinomycin D-treated cells, in contrast to eIF4E1. Moreover, eIF4E2 shuttles through nuclei in a Crm1-dependent manner, but in an 4E-T-independent manner, also unlike eIF4E1. Altogether we conclude that while both cap-binding proteins interact with 4E-T, and can be recruited by 4E-T to P-bodies, eIF4E2 functions are likely to be distinct from those of eIF4E1, both in the cytoplasm and nucleus, further extending our understanding of mammalian class I and II cap-binding proteins.
    PLoS ONE 11/2013; 8(8):e72761. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Canonical translation initiation in eukaryotes begins with the eIF4F complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of mRNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors thatand ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis thaliana encodes two such genes in tandem loci on chromosome 1, EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA-Seq data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/c-type proteins support translation in yeast, but promote translation initiation in vitro at a lower rate compared to eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/c-type proteins although bona fide cap-binding proteins, have divergent properties and based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.
    Plant physiology 02/2014; · 7.39 Impact Factor


Available from
Jun 2, 2014