Article

Isolation and manipulation of mammalian neural stem cells in vitro.

Department of Molecular Embryology, Max Planck Institute of Immunobiology, Freiburg, Germany.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 02/2009; 482:143-58. DOI: 10.1007/978-1-59745-060-7_9
Source: PubMed

ABSTRACT Neural stem cells are potentially a source of cells not only for replacement therapy but also as drug vectors, bringing bioactive molecules into the brain. Stem cell-like cells can be isolated readily from the human brain, thus, it is important to find culture systems that enable expansion in a multipotent state to generate cells that are of potential use for therapy. Currently, two systems have been described for the maintenance and expansion of multipotent progenitors, an adhesive substrate bound and the neurosphere culture. Both systems have pros and cons, but the neurosphere may be able to simulate the three-dimensional environment of the niche in which the cells reside in vivo. Thus, the neurosphere, when used and cultured appropriately, can expand and provide important information about the mechanisms that potentially control neural stem cells in vivo.

0 Bookmarks
 · 
97 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of function mutations in UPF3B result in variable clinical presentations including intellectual disability (ID, syndromic and non-syndromic), autism, childhood onset schizophrenia and attention deficit hyperactivity disorder. UPF3B is a core member of the nonsense mediated mRNA decay (NMD) pathway that functions to rapidly degrade transcripts with premature termination codons (PTCs). Traditionally identified in thousands of human diseases, PTCs were recently also found to be part of 'normal' genetic variation in human populations. Furthermore, many human transcripts have naturally occurring regulatory features compatible with 'endogenous' PTCs strongly suggesting roles of NMD beyond PTC mRNA control. In this study, we investigated the role of Upf3b and NMD in neural cells. We provide evidence that suggests Upf3b dependent NMD (Upf3b-NMD) is regulated at multiple levels during development including regulation of expression and sub-cellular localisation of Upf3b. Furthermore complementary expression of Upf3b, Upf3a and Stau1 stratify the developing dorsal telencephalon, suggesting that alternative NMD, and the related Staufen1 mediated mRNA decay (SMD) pathways are differentially employed. Loss of Upf3b-NMD in neural progenitor cells resulted in the expansion of cell numbers at the expense of their differentiation. In primary hippocampal neurons loss of Upf3b-NMD resulted in subtle neurite growth effects. Our data suggest that the cellular consequences of loss of Upf3b-NMD can be explained in-part by changes in expression of key NMD-feature containing transcripts which are commonly deregulated also in patients with UPF3B mutations. Our research identifies novel pathological mechanisms of UPF3B mutations and at least partly explains the clinical phenotype of UPF3B patients.
    Human Molecular Genetics 07/2013; · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSC) are self-renewing multipotent cells that have emerged as a powerful tool to repair the injured brain. These cells can be cultured as neurospheres, which are floating aggregates of neural stem/progenitor cells (NSPC). Despite their high clonal expansion capacity, it has been suggested that in neurospheres, only a small percentage of cells are capable of proliferation and that this system is not efficient in terms of neurogenic competence. Thus, our aim was to develop a neurosphere culture method with a highly proliferative stem/progenitor cell population and particularly with a prominent neurogenic potential, surpassing some of the claimed weaknesses of the neurosphere assay. In our model, mouse neurospheres were harvested from neural tissue at E15 and after only 4 days-in-vitro (DIV), we have achieved highly proliferative primary neurospheres (81% Sox2 and 76% Ki67 positive cells) and a rather low number of cells expressing glial and neuronal markers (∼10%). After inducing differentiation, we have attained an enriched neuronal population (45% β-III-tubulin positive cells at 15 DIV). Using a simple methodology, we have developed a NSPC model that can provide a valuable source of neuronal precursors, thus offering a potential starting point for cell replacement therapies following CNS injury.
    International Journal of Developmental Neuroscience. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.
    PLoS ONE 01/2012; 7(11):e49874. · 3.53 Impact Factor