Article

Isolation and manipulation of mammalian neural stem cells in vitro.

Department of Molecular Embryology, Max Planck Institute of Immunobiology, Freiburg, Germany.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 02/2009; 482:143-58. DOI: 10.1007/978-1-59745-060-7_9
Source: PubMed

ABSTRACT Neural stem cells are potentially a source of cells not only for replacement therapy but also as drug vectors, bringing bioactive molecules into the brain. Stem cell-like cells can be isolated readily from the human brain, thus, it is important to find culture systems that enable expansion in a multipotent state to generate cells that are of potential use for therapy. Currently, two systems have been described for the maintenance and expansion of multipotent progenitors, an adhesive substrate bound and the neurosphere culture. Both systems have pros and cons, but the neurosphere may be able to simulate the three-dimensional environment of the niche in which the cells reside in vivo. Thus, the neurosphere, when used and cultured appropriately, can expand and provide important information about the mechanisms that potentially control neural stem cells in vivo.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In adult mammals, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus (DG) show ongoing neurogenesis, and multipotent neural stem or progenitor cells (NSCs) in these two regions exhibit different intrinsic properties. However, investigation of the mechanisms underlying such differences has been limited by a lack of efficient methods for isolating NSCs, particularly from the adult DG. Here we describe a protocol that enables us to isolate self-renewing and multipotent NSCs from the SVZ and the DG of the same adult mouse. The protocol involves the microdissection of the SVZ and DG from one adult mouse brain, isolation of NSCs from specific regions and cultivation of NSCs in vitro. The entire procedure takes 2-3 h. As only one mouse is needed for each cell isolation procedure, this protocol will be particularly useful for studies with limited availability of mice, such as mice that contain multiple genetic modifications.
    Nature Protocol 10/2012; 7(11):2005-12. · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Temporal regulation of embryonic neurogenesis is controlled by hypostable transcription factors. The mechanism of the process is unclear. Here we show that the RNase III Drosha and DGCR8 (also known as Pasha), key components of the microRNA (miRNA) microprocessor, have important functions in mouse neurogenesis. Loss of microprocessor in forebrain neural progenitors resulted in a loss of stem cell character and precocious differentiation whereas Dicer deficiency did not. Drosha negatively regulated expression of the transcription factors Neurogenin 2 (Ngn2) and NeuroD1 whereas forced Ngn2 expression phenocopied the loss of Drosha. Neurog2 mRNA contains evolutionarily conserved hairpins with similarities to pri-miRNAs, and associates with the microprocessor in neural progenitors. We uncovered a Drosha-dependent destabilization of Neurog2 mRNAs consistent with microprocessor cleavage at hairpins. Our findings implicate direct and miRNA-independent destabilization of proneural mRNAs by the microprocessor, which facilitates neural stem cell (NSC) maintenance by blocking accumulation of differentiation and determination factors.
    Nature Neuroscience 06/2012; 15(7):962-9. · 15.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of function mutations in UPF3B result in variable clinical presentations including intellectual disability (ID, syndromic and non-syndromic), autism, childhood onset schizophrenia and attention deficit hyperactivity disorder. UPF3B is a core member of the nonsense mediated mRNA decay (NMD) pathway that functions to rapidly degrade transcripts with premature termination codons (PTCs). Traditionally identified in thousands of human diseases, PTCs were recently also found to be part of 'normal' genetic variation in human populations. Furthermore, many human transcripts have naturally occurring regulatory features compatible with 'endogenous' PTCs strongly suggesting roles of NMD beyond PTC mRNA control. In this study, we investigated the role of Upf3b and NMD in neural cells. We provide evidence that suggests Upf3b dependent NMD (Upf3b-NMD) is regulated at multiple levels during development including regulation of expression and sub-cellular localisation of Upf3b. Furthermore complementary expression of Upf3b, Upf3a and Stau1 stratify the developing dorsal telencephalon, suggesting that alternative NMD, and the related Staufen1 mediated mRNA decay (SMD) pathways are differentially employed. Loss of Upf3b-NMD in neural progenitor cells resulted in the expansion of cell numbers at the expense of their differentiation. In primary hippocampal neurons loss of Upf3b-NMD resulted in subtle neurite growth effects. Our data suggest that the cellular consequences of loss of Upf3b-NMD can be explained in-part by changes in expression of key NMD-feature containing transcripts which are commonly deregulated also in patients with UPF3B mutations. Our research identifies novel pathological mechanisms of UPF3B mutations and at least partly explains the clinical phenotype of UPF3B patients.
    Human Molecular Genetics 07/2013; · 7.69 Impact Factor