Simulating extracorporeal membrane oxygenation emergencies to improve human performance. Part I: methodologic and technologic innovations.

Department of Pediatrics, Oregon Health Science University, Portland, OR 97239-1077, USA.
Simulation in healthcare: journal of the Society for Simulation in Healthcare (Impact Factor: 1.59). 01/2006; 1(4):220-7. DOI: 10.1097/01.SIH.0000243550.24391.ce
Source: PubMed

ABSTRACT Extracorporeal membrane oxygenation (ECMO) is a form of long-term cardiopulmonary bypass used to treat infants, children, and adults with respiratory and/or cardiac failure despite maximal medical therapy. Mechanical emergencies on extracorporeal membrane oxygenation (ECMO) have an associated mortality of 25%. Thus, acquiring and maintaining the technical, behavioral, and critical thinking skills necessary to manage ECMO emergencies is essential to patient survival. Traditional training in ECMO management is primarily didactic in nature and usually complemented with varying degrees of hands-on training using a water-filled ECMO circuit. These traditional training methods do not provide an opportunity for trainees to recognize and interpret real-time clinical cues generated by human patients and their monitoring equipment. Adult learners are most likely to acquire such skills in an active learning environment. To provide authentic, intensive, interactive ECMO training without risk to real patients, we used methodologies pioneered by the aerospace industry and our experience developing a simulation-based training program in neonatal resuscitation to develop a similar simulation-based training program in ECMO crisis management, ECMO Sim.
A survey was conducted at the 19th Annual Children's National Medical Center ECMO Symposium to determine current methods for ECMO training. Using commercially available technology, we linked a neonatal manikin with a standard neonatal ECMO circuit primed with artificial blood. Both the manikin and circuit were placed in a simulated neonatal intensive care unit environment equipped with remotely controlled monitors, real medical equipment and human colleagues. Twenty-five healthcare professionals, all of whom care for patients on ECMO and who underwent traditional ECMO training in the prior year, participated in a series of simulated ECMO emergencies. At the conclusion of the program, subjects completed a questionnaire qualitatively comparing ECMO Sim with their previous traditional ECMO training experience. The amount of time spent engaged in active and passive activities during both ECMO Sim and traditional ECMO training was quantified by review of videotape of each program.
Hospitals currently use lectures, multiple-choice exams, water drills, and animal laboratory testing for their ECMO training. Modification of the circuit allowed for physiologically appropriate circuit pressures (both pre- and postoxygenator) to be achieved while circulating artificial blood continuously through the circuit and manikin. Realistic changes in vital signs on the bedside monitor and fluctuations in the mixed venous oxygen saturation monitor were also effectively achieved remotely. All subjects rated the realism of the scenarios as good or excellent and described ECMO Sim as more effective than traditional ECMO training. They reported that ECMO Sim engaged their intellect to a greater degree and better developed their technical, behavioral, and critical thinking skills. Active learning (eg, hands-on activities) comprised 78% of the total ECMO Sim program compared with 14% for traditional ECMO training (P < 0.001). Instructor-led lectures predominated in traditional ECMO training.
Traditional ECMO training programs have yet to incorporate simulation-based methodology. Using current technology it is possible to realistically simulate in real-time the clinical cues (visual, auditory, and tactile) generated by a patient on ECMO. ECMO Sim as a training program provides more opportunities for active learning than traditional training programs in ECMO management and is overwhelmingly preferred by the experienced healthcare professionals serving as subjects in this study. Subjects also indicated that they felt that the acquisition of key cognitive, technical, and behavioral skills and transfer of those skills to the real medical domain was better achieved during simulation-based training.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal care occurs in extremely complex and dynamic environments and requires providers to operate under intense time pressure in coordination with multiple disciplines. Teaching the clinical skills requisite to effective practice requires the meticulous application of curricular design principles. Simulation can be used as an effective instructional strategy in achieving learner acquisition and retention of the cognitive, technical, and behavioral skills essential to optimal delivery of care in neonatology.
    Seminars in perinatology 04/2011; 35(2):59-67. DOI:10.1053/j.semperi.2011.01.004 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The new Perfusion Simulation Center at the Medical University of South Carolina provides a new level of high fidelity simulation training for perfusion students. A key component is the Orpheus Perfusion Simulator which is a computer-driven simulator integrated with the mechanical connections of the heart-lung machine to allow for real time operative procedures and perfusion incidents. Due to the ability to consistently reproduce cardiac surgical scenarios, it is possible to develop both basic perfusion skills as well as advanced emergency skills more effectively than with animal models. The purpose of this paper is to provide details about advanced simulation for perfusionists and to illustrate how simulation can be used to promote the assets of good communication, team work, and surgical awareness. Two sets of four cardiac surgical scenarios were recorded in the perfusion simulation operating room. Scenario team member roles included a cardiac surgeon, an anesthesiologist, a perfusionist and an operating room nurse. The scripted surgical scenarios were viewed by a focus group of students charged with identifying key personality traits of different members of the operating team and to characterize them using a list of descriptive words adapted from the Medical University of South Carolina's Peer Review Tool. In the first set of scenarios, initial scores were negative, with irresponsibility, impatience, and carelessness listed as the top behavioral characteristics leading to human error. In the second set of scenarios, logical, clear-thinking, and attentive were the most common personality traits observed of the effective team members. Simulation has become an invaluable tool for perfusion education and the goal of improving patient safety during cardiopulmonary bypass. The opportunities for advanced training in the perfusion simulation environment will certainly expand in the future.
    Perfusion 05/2011; 26(5):390-4. DOI:10.1177/0267659111410901 · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracorporeal membrane oxygenation (ECMO) is a high-risk, complex therapy. Opportunities to develop teamwork skills and expertise to mitigate risks are few. Our objective was to assess whether simulation would improve technical and nontechnical skills in dealing with ECMO circuit emergencies and allow transfer of skills from the simulated setting to clinical environment. Subjects were ECMO circuit providers who performed scenarios utilizing an infant simulator and functional ECMO circuit, followed immediately by video-assisted debriefings. Within the simulation laboratory, outcomes were timed responses, percentage of correct actions, teamwork, safety knowledge, and attitudes. Identification of latent safety threats (LSTs) was the focus of debriefings. Within the clinical setting, translation of learned skills was assessed by measuring circuit readiness and compliance with a cannulation initiation checklist. Nineteen subjects performed 96 simulations during enrollment. In the laboratory, there was no improvement in timed responses or percent correct actions. Teamwork (P = 0.001), knowledge (P = 0.033), and attitudes (P = 0.001) all improved compared with baseline. Debriefing identified 99 LSTs. Clinically, 26 cannulations occurred during enrollment. Median time from blood available to circuit readiness was 17 minutes (range, 5-95), with no improvement during the study. Compliance with the initiation checklist improved compared with prestudy baseline (P < 0.0001). Simulation-based training is an effective method to improve safety knowledge, attitudes, and teamwork surrounding ECMO emergencies. On-going training is feasible and allows identification of LSTs. Further work is needed to assess translation of learned skills and behaviors into the clinical environment.
    Simulation in healthcare: journal of the Society for Simulation in Healthcare 06/2011; 6(5):284-91. DOI:10.1097/SIH.0b013e31821dfcea · 1.59 Impact Factor