Article

Alleviation of heat strain by cooling different body areas during red pepper harvest work at WBGT 33 degrees C.

Department of Clothing & Textiles, College of Human Ecology, Seoul National University, Korea.
Industrial Health (Impact Factor: 0.87). 01/2009; 46(6):620-8. DOI: 10.2486/indhealth.46.620
Source: PubMed

ABSTRACT The purpose of the present study was to examine the effects of different types of personal cooling equipments (PCE) on the alleviation of heat strain during red pepper harvest simulated in a climatic chamber. The experiment consisted of eight conditions: 1) Control, 2) Neck cooling scarf A with a cooling area of 68 cm2, 3) Neck cooling scarf B (cooling area 154 cm2), 4) Brimmed hat with a frozen gel pack, 5) Cooling vest (cooling area 606 cm2), 6) Hat+Neck Scarf B, 7) Hat+Vest, and 8) Hat+Neck Scarf B+Vest. Twelve subjects worked a red pepper harvest simulated in a climatic chamber of WBGT 33 degrees C. The result showed that rectal temperature (T(re)) was effectively maintained under 38 degrees C by wearing PCE. Mean skin temperature (T(sk)) and heart rate (HR) became more stable through wearing PCE. When wearing the 'Hat+Scarf B+Vest', particularly, T(sk) and HR quickly decreased to the comfort level during the mid-rest stage. We confirmed that the vest with a cooling area of only 3.3% body surface area (BSA) was effective in alleviating heat strain in a simulated harvest work. Furthermore, the heat strain of farm workers can be considerably eliminated by the combination of the cooling vest, a scarf, and a brimmed hat, with the total cooling area of 4.2% BSA.

0 Bookmarks
 · 
112 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a)  = 34°C, RH = 60%, and ν(a)  = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. PRACTICAL IMPLICATIONS: Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home.
    Indoor Air 03/2012; · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phase change material (PCM) absorbs or releases latent heat when it changes phases, making thermal-regulated clothing possible. The objective of this study was to quantify the relationships between PCM cooling rate and temperature gradient, mass and covering area on a thermal manikin in a climatic chamber. Three melting temperatures (24, 28, 32 degrees C) of the PCMs, different mass, covering areas and two manikin temperatures (34 and 38 degrees C) were used. The results showed that the cooling rate of the PCM vests tested is positively correlated with the temperature gradient between the thermal manikin and the melting temperature of the PCMs. The required temperature gradient is suggested to be greater than 6 degrees C when PCM vests are used in hot climates. With the same temperature gradient, the cooling rate is mainly determined by the covering area. The duration of the cooling effect is dependent on PCM mass and the latent heat. STATEMENT OF RELEVANCE: The study of factors affecting the cooling rate of personal cooling equipment incorporated with PCM helps to understand cooling mechanisms. The results suggest climatic conditions, the required temperature gradient, PCM mass and covering area should be taken into account when choosing personal PCM cooling equipment.
    Ergonomics 05/2010; 53(5):716-23. · 1.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.
    Arbeitsphysiologie 12/2010; 111(6):1207-16. · 2.66 Impact Factor

Full-text (2 Sources)

View
14 Downloads
Available from
Jun 2, 2014