Article

Human Genetic Variation Influences Vitamin C Homeostasis by Altering Vitamin C Transport and Antioxidant Enzyme Function.

Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
Annual Review of Nutrition (Impact Factor: 10.46). 04/2013; DOI: 10.1146/annurev-nutr-071812-161246
Source: PubMed

ABSTRACT New evidence for the regulation of vitamin C homeostasis has emerged from several studies of human genetic variation. Polymorphisms in the genes encoding sodium-dependent vitamin C transport proteins are strongly associated with plasma ascorbate levels and likely impact tissue cellular vitamin C status. Furthermore, genetic variants of proteins that suppress oxidative stress or detoxify oxidatively damaged biomolecules, i.e., haptoglobin, glutathione-S-transferases, and possibly manganese superoxide dismutase, affect ascorbate levels in the human body. There also is limited evidence for a role of glucose transport proteins. In this review, we examine the extent of the variation in these genes, their impact on vitamin C status, and their potential role in altering chronic disease risk. We conclude that future epidemiological studies should take into account genetic variation in order to successfully determine the role of vitamin C nutriture or supplementation in human vitamin C status and chronic disease risk. Expected final online publication date for the Annual Review of Nutrition Volume 33 is July 17, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.

5 Followers
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Advances in molecular biology, emergence of novel techniques and huge amount of information generated in the post-Human Genome Project era have fostered the emergence of new disciplines in the field of nutritional research: Nutrigenomics deals with the effect of diet on gene expression whereas nutrigenetics refers to the impact of inherited traits on the response to a specific dietary pattern, functional food or supplement. Understanding the role of micronutrient supplementation with specific genetic backgrounds may provide an important contribution to a new optimum health strategy based on individualized nutritional treatment and may provide the strategies for the development of safer and more effective dietary interventions. This overview of the various aspects of supplementation of micronutrients in the era of nutrigenetics and nutrigenomics may provide a better understanding of novel nutritional research approach and provide an additional insight that can be applied to the daily dietary practice.
    International Journal of Food Sciences and Nutrition 03/2014; 65(5). DOI:10.3109/09637486.2014.898258 · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large cross-sectional population studies confirm that vitamin C deficiency is common in humans, affecting 5%-10% of adults in the industrialized world. Moreover, significant associations between poor vitamin C status and increased morbidity and mortality have consistently been observed. However, the absorption, distribution and elimination kinetics of vitamin C in vivo are highly complex, due to dose-dependent non-linearity, and the specific regulatory mechanisms are not fully understood. Particularly, little is known about how adaptive mechanisms during states of deficiency affect the overall regulation of vitamin C transport in the body. This review discusses mechanisms of vitamin C transport and potential means of regulation with special emphasis on capacity and functional properties, such as differences in the Km of vitamin C transporters in different target tissues, in some instances demonstrating a tissue-specific distribution.
    Nutrients 08/2013; 5(8):2860-79. DOI:10.3390/nu5082860 · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin C (ascorbate) is an essential water-soluble micronutrient in humans and is obtained through the diet, primarily from fruits and vegetables. In vivo, vitamin C acts as a cofactor for numerous biosynthetic enzymes required for the synthesis of amino acid-derived macromolecules, neurotransmitters, and neuropeptide hormones, and is also a cofactor for various hydroxylases involved in the regulation of gene transcription and epigenetics. Vitamin C was first chemically synthesized in the early 1930s and since then researchers have been investigating the comparative bioavailability of synthetic versus natural, food-derived vitamin C. Although synthetic and food-derived vitamin C is chemically identical, fruit and vegetables are rich in numerous nutrients and phytochemicals which may influence its bioavailability. The physiological interactions of vitamin C with various bioflavonoids have been the most intensively studied to date. Here, we review animal and human studies, comprising both pharmacokinetic and steady-state designs, which have been carried out to investigate the comparative bioavailability of synthetic and food-derived vitamin C, or vitamin C in the presence of isolated bioflavonoids. Overall, a majority of animal studies have shown differences in the comparative bioavailability of synthetic versus natural vitamin C, although the results varied depending on the animal model, study design and body compartments measured. In contrast, all steady state comparative bioavailability studies in humans have shown no differences between synthetic and natural vitamin C, regardless of the subject population, study design or intervention used. Some pharmacokinetic studies in humans have shown transient and small comparative differences between synthetic and natural vitamin C, although these differences are likely to have minimal physiological impact. Study design issues and future research directions are discussed.
    Nutrients 11/2013; 5(11):4284-304. DOI:10.3390/nu5114284 · 3.15 Impact Factor