Article

Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies.

Department of Preventive Medicine, Laval University, Quebec City, QC, Canada.
Acta Diabetologica (Impact Factor: 4.63). 12/2008; 46(3):217-26. DOI: 10.1007/s00592-008-0080-5
Source: PubMed

ABSTRACT Several single nucleotide polymorphisms (SNPs) for type 2 diabetes mellitus (T2DM) risk have been identified by genome wide association studies (GWAS). The objective of the present study was to investigate the impact of these SNPs on T2DM intermediate phenotypes in order to clarify the physiological mechanisms through which they exert their effects on disease etiology. We analysed 23 SNPs in 9 T2DM genes (CDKAL1, CDKN2B, HHEX/IDE, IGF2BP2, KCNJ11, SLC30A8, TCF2, TCF7L2 and WFS1) in a maximum of 712 men and women from the Quebec Family Study. The participants underwent a 75 g oral glucose tolerance test (OGTT) and were measured for glucose, insulin and C-peptide levels. Indices of insulin sensitivity and insulin secretion were derived from fasting and OGTT measurements. We confirmed the significant associations of variants in CDKAL1, CDKN2B, HHEX/IDE, KCNJ11 and TCF7L2 with insulin secretion and also found associations of some of these variants with insulin sensitivity and glucose tolerance. IGF2BP2 and SLC30A8 SNPs were not associated with insulin secretion but were with insulin sensitivity and glucose tolerance (0.002 <or= P <or= 0.02). To examine the joint effects of these variants and their contribution to T2DM endophenotypes variance, stepwise regression models were used and the model R (2) was computed. The variance in the phenotypes explained by combinations of variants ranged from 2.0 to 8.5%. Diabetes-associated variants in CDKAL1, CDKN2B, HHEX/IDE, IGF2BP2, KCNJ11, SLC30A8 and TCF7L2 are associated with physiological alterations leading to T2DM, such as glucose intolerance, impaired insulin secretion or insulin resistance, supporting their role in the disease aetiology. These variants were found to account for 2.0-8.5% of the variance of T2DM-related traits.

1 Bookmark
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to systematically evaluate the contribution of IGF2BP2 to T2DM and its interaction with obesity to T2DM susceptibility.
    European journal of medical research 07/2014; 19(1):40. · 1.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is a serious global health problem. Large-scale genome-wide association studies identified loci for type 2 diabetes mellitus (T2DM), including adiponectin (ADIPOQ) gene and transcription factor 7-like 2 (TCF7L2), but few studies clarified the effect of genetic polymorphisms of ADIPOQ and TCF7L2 on risk of T2DM. We attempted to elucidate association between T2DM and polymorphic variations of both in Taiwan's Chinese Han population, with our retrospective case-control study genotyping single nucleotide polymorphisms (SNPs) in ADIPOQ and TCF7L2 genes both in 149 T2DM patients and in 139 healthy controls from Taiwan. Statistical analysis gauged association of these polymorphisms with risk of T2DM to show ADIPOQ rs1501299 polymorphism variations strongly correlated with T2DM risk (P = 0.042), with rs2241766 polymorphism being not associated with T2DM (P = 0.967). However, both polymorphisms rs7903146 and rs12255372 of TCF7L2 were rarely detected in Taiwanese people. This study avers that ADIPOQ rs1501299 polymorphism contributes to risk of T2DM in the Taiwanese population.
    TheScientificWorldJournal. 01/2014; 2014:650393.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans.
    PLoS Genetics 11/2014; 10(11):e1004735. · 8.52 Impact Factor