Article

Significant changes in the skin microbiome mediated by the sport of roller derby.

Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon , Eugene, OR , USA.
PeerJ 08/2013; 1:e53. DOI: 10.7717/peerj.53
Source: PubMed

ABSTRACT Diverse bacterial communities live on and in human skin. These complex communities vary by skin location on the body, over time, between individuals, and between geographic regions. Culture-based studies have shown that human to human and human to surface contact mediates the dispersal of pathogens, yet little is currently known about the drivers of bacterial community assembly patterns on human skin. We hypothesized that participation in a sport involving skin to skin contact would result in detectable shifts in skin bacterial community composition. We conducted a study during a flat track roller derby tournament, and found that teammates shared distinct skin microbial communities before and after playing against another team, but that opposing teams' bacterial communities converged during the course of a roller derby bout. Our results are consistent with the hypothesis that the human skin microbiome shifts in composition during activities involving human to human contact, and that contact sports provide an ideal setting in which to evaluate dispersal of microorganisms between people.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome. Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure. Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our health and well-being.
    PLoS ONE 01/2014; 9(1):e87093. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans can spend the majority of their time indoors, but little is known about the interactions between the human and built-environment microbiomes or the forces that drive microbial community assembly in the built environment. We sampled 16S rRNA genes from four different surface types throughout a university classroom to determine whether bacterial assemblages on each surface were best predicted by routine human interactions or by proximity to other surfaces within the classroom. We then analyzed our data with publicly-available datasets representing potential source environments. Bacterial assemblages from the four surface types, as well as individual taxa, were indicative of different source pools related to the type of human contact each surface routinely encounters. Spatial proximity to other surfaces in the classroom did not predict community composition. Our results indicate that human-associated microbial communities can be transferred to indoor surfaces following contact, and that such transmission is possible even when contact is indirect, but that proximity to other surfaces in the classroom does not influence community composition.
    Microbiome. 01/2014; 2(1):7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian hairs are one of the most ubiquitous types of trace evidence collected in the course of forensic investigations. However, hairs that are naturally shed or that lack roots are problematic substrates for DNA profiling; these hair types often contain insufficient nuclear DNA to yield short tandem repeat (STR) profiles. Whilst there have been a number of initial investigations evaluating the value of metagenomics analyses for forensic applications (e.g. examination of computer keyboards), there have been no metagenomic evaluations of human hairs-a substrate commonly encountered during forensic practice. This present study attempts to address this forensic capability gap, by conducting a qualitative assessment into the applicability of metagenomic analyses of human scalp and pubic hair. Forty-two DNA extracts obtained from human scalp and pubic hairs generated a total of 79,766 reads, yielding 39,814 reads post control and abundance filtering. The results revealed the presence of unique combinations of microbial taxa that can enable discrimination between individuals and signature taxa indigenous to female pubic hairs. Microbial data from a single co-habiting couple added an extra dimension to the study by suggesting that metagenomic analyses might be of evidentiary value in sexual assault cases when other associative evidence is not present. Of all the data generated in this study, the next-generation sequencing (NGS) data generated from pubic hair held the most potential for forensic applications. Metagenomic analyses of human hairs may provide independent data to augment other forensic results and possibly provide association between victims of sexual assault and offender when other associative evidence is absent. Based on results garnered in the present study, we believe that with further development, bacterial profiling of hair will become a valuable addition to the forensic toolkit.
    Investigative genetics. 12/2014; 5(1):16.

Full-text (2 Sources)

Download
41 Downloads
Available from
May 28, 2014