Structure of the human smoothened receptor bound to an antitumour agent. Nature

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
Nature (Impact Factor: 42.35). 05/2013; 497(7449). DOI: 10.1038/nature12167
Source: PubMed

ABSTRACT The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 Å resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.

1 Follower
    • "On the other hand, replacement of T4L by b 562 RIL in ICL3 produced a structure closer in conformation to the inactive state, although the ionic interaction was not fully formed (Liu et al., 2012). The insertion of b 562 RIL into ICL3 of the smoothened receptor has also been proposed as a reason for the lack of structural rearrangements at the cytoplasmic surface upon agonist binding (Wang et al., 2013b). Finally, comparison of the murine d-opioid receptor structure solved with an ICL3 T4L fusion (Granier et al., 2012) and the human d-opioid receptor with an N-terminal b 562 RIL fusion (Fenalti et al., 2014) shows a high degree of structural similarity, with the main deviations occurring proximal to the sites of fusion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptor (GPCR) structural biology has progressed dramatically in the last decade. There are now over 120 GPCR crystal structures deposited in the Protein Data Bank of 32 different receptors from families scattered across the phylogenetic tree, including Class B, C, and Frizzled GPCRs. These structures have been obtained in combination with a wide variety of ligands, and captured in a range of conformational states. This surge in structural knowledge has enlightened research into the molecular recognition of biologically active molecules, the mechanisms of receptor activation, the dynamics of functional selectivity, and fuelled structure- based drug design efforts for GPCRs. Here we summarize the innovations in both protein engineering/molecular biology and crystallography techniques that have led to these advances in GPCR structural biology, and discuss how they may influence the resulting structural models. We also provide a brief molecular pharmacologist's guide to GPCR X-ray crystallography, outlining some key aspects in the process of structure determination, with the goal to encourage non-crystallographers to interrogate structures at the molecular level. Finally we show how chemogenomics approaches can be used to marry the wealth of existing receptor pharmacology data with the expanding repertoire of structures, providing a deeper understanding of the mechanistic details of GPCR function. The American Society for Pharmacology and Experimental Therapeutics.
    Molecular pharmacology 07/2015; DOI:10.1124/mol.115.099663 · 4.12 Impact Factor
  • Source
    • "Muscarinic (4DAJ (Kruse et al., 2012)), Neurotensin NTSR1 (4GRV (White et al., 2012)), μ receptor (4DKL (Manglik et al., 2012)), δ receptor (4EJ4 (Granier et al., 2012)), κ receptor (4DJH (Wu et al., 2012)), NOP receptor (4EA3 (Thompson et al., 2012)), Protease activated receptor 1 (3VW7 (Zhang et al., 2012)), 5HT 1B (4IAR (Wang et al., 2013a)), 5HT 2B (4IB4 (Wacker et al., 2013)), SMO (4JKV (Wang et al., 2013b)), Glucagon (4L6R (Siu et al., 2013)), CRF1R (4K5Y (Hollenstein et al., 2013)), Chemokine CCR5 (4MBS (Tan et al., 2013)), mGluR1 (4OR2 (Wu et al., 2014)), P2Y12 (4NTJ (Zhang et al., 2014)), mGluR 5 (4OO9 (Dore et al., 2014)), GPR40/FFAR1 (4PHU (Srivastava et al., 2014)), and Orexin OX2R (4S0V (Yin et al., 2014)). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Opioid receptors are important drug targets for pain management, addiction, and mood disorders. Although substantial research on these important subtypes of G protein-coupled receptors has been conducted over the past two decades to discover ligands with higher specificity and diminished side effects, currently used opioid therapeutics remain suboptimal. Luckily, recent advances in structural biology of opioid receptors provide unprecedented insights into opioid receptor pharmacology and signaling. We review here a few recent studies that have used the crystal structures of opioid receptors as a basis for revealing mechanistic details of signal transduction mediated by these receptors, and for the purpose of drug discovery. Copyright © 2015. Published by Elsevier B.V.
    European journal of pharmacology 05/2015; DOI:10.1016/j.ejphar.2015.05.012 · 2.68 Impact Factor
  • Source
    • ". Two Distinct Mechanisms of SMO-Mediated Resistance in BCCs (A) Position of the SMO variants within the SMO crystal structure showing their arrangement relative to an inhibitor (Wang et al., 2013) in TM3 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Advanced basal cell carcinomas (BCCs) frequently acquire resistance to Smoothened (SMO) inhibitors through unknown mechanisms. Here we identify SMO mutations in 50% (22 of 44) of resistant BCCs and show that these mutations maintain Hedgehog signaling in the presence of SMO inhibitors. Alterations include four ligand binding pocket mutations defining sites of inhibitor binding and four variants conferring constitutive activity and inhibitor resistance, illuminating pivotal residues that ensure receptor autoinhibition. In the presence of a SMO inhibitor, tumor cells containing either class of SMO mutants effectively outcompete cells containing the wild-type SMO. Finally, we show that both classes of SMO variants respond to aPKC-ι/λ or GLI2 inhibitors that operate downstream of SMO, setting the stage for the clinical use of GLI antagonists. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cancer Cell 03/2015; 27(3):342-53. DOI:10.1016/j.ccell.2015.02.002 · 23.89 Impact Factor
Show more