Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans.

Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, Paris, France.
Nature Reviews Microbiology (Impact Factor: 23.32). 02/2009; 7(1):50-60. DOI: 10.1038/nrmicro2077
Source: PubMed

ABSTRACT Buruli ulcer is an emerging human disease caused by infection with a slow-growing pathogen, Mycobacterium ulcerans, that produces mycolactone, a cytotoxin with immunomodulatory properties. The disease is associated with wetlands in certain tropical countries, and evidence for a role of insects in transmission of this pathogen is growing. Comparative genomic analysis has revealed that M. ulcerans arose from Mycobacterium marinum, a ubiquitous fast-growing aquatic species, by horizontal transfer of a virulence plasmid that carries a cluster of genes for mycolactone production, followed by reductive evolution. Here, the ecology, microbiology, evolutionary genomics and immunopathology of Buruli ulcer are reviewed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size-their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets.
    mBio 12/2014; 5(6). · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.
    Frontiers in Immunology 10/2014; 5:491.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background While cultivation of pathogens represents a foundational diagnostic approach in the study of infectious diseases, its value for the confirmation of clinical diagnosis of Buruli ulcer is limited by the fact that colonies of Mycobacterium ulcerans appear only after about eight weeks of incubation at 30°C. However, for molecular epidemiological and drug sensitivity studies, primary isolation of M. ulcerans remains an essential tool. Since for most of the remote Buruli ulcer endemic regions of Africa cultivation laboratories are not easily accessible, samples from lesions often have to be stored for extended periods of time prior to processing. The objective of the current study therefore was to determine which transport medium, decontamination method or other factors decrease the contamination rate and increase the chance of primary isolation of M. ulcerans bacilli after long turnover time.Methods Swab and FNA samples for the primary cultivation were collected from clinically confirmed Buruli ulcer patients in the Mapé Basin of Cameroon. The samples were either stored in the semi-solid transport media 7H9 or Amies or dry for extended period of time prior to processing. In the laboratory, four decontamination methods and two inoculation media were evaluated and statistical methods applied to identify factors that decrease culture contamination and factors that increase the probability of M. ulcerans recovery.ResultsThe analysis showed: i) that the use of moist transport media significantly increased the recovery rate of M. ulcerans compared to samples kept dry; ii) that the choice of the decontamination method had no significant effect on the chance of M. ulcerans isolation; and iii) that Löwenstein-Jensen supplemented with antibiotics as inoculation medium yielded the best results. We further found that, ten extra days between sampling and inoculation lead to a relative decrease in the isolation rate of M. ulcerans by nearly 20%. Finally, collection and processing of multiple samples per patient was found to significantly increase the M. ulcerans isolation rate.Conclusions Based on our analysis we suggest a procedure suitable for the primary isolation of M. ulcerans strains from patients following long delay between sample collection and processing to establish a M. ulcerans strain collection for research purposes.
    BMC Infectious Diseases 11/2014; 14(1):636. · 2.56 Impact Factor