Reactive Oxygen Species and Inhibitors of Inflammatory Enzymes, NADPH Oxidase, and iNOS in Experimental Models of Parkinson's Disease

Department of Biotechnology, Research Institute of Inflammatory Diseases, Konkuk University, Chungju 380-701, Republic of Korea.
Mediators of Inflammation (Impact Factor: 3.88). 01/2012; 16. DOI: 10.1155/2012/823902
Source: PubMed

ABSTRACT Reactive oxygen species (ROSs) are emerging as important players in the etiology of neurodegenerative disorders including Parkin-son's disease (PD). Out of several ROS-generating systems, the inflammatory enzymes nicotinamide adenine dinucleotide phos-phate (NADPH) oxidase and inducible nitric oxide synthase (iNOS) were believed to play major roles. Mounting evidence suggests that activation of NADPH oxidase and the expression of iNOS are directly linked to the generation of highly reactive ROS which affects various cellular components and preferentially damage midbrain dopaminergic neurons in PD. Therefore, appropriate man-agement or inhibition of ROS generated by these enzymes may represent a therapeutic target to reduce neuronal degeneration seen in PD. Here, we have summarized recently developed agents and patents claimed as inhibitors of NADPH oxidase and iNOS enzymes in experimental models of PD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Dysregulation of mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of PD. However, the underlying mechanism is incompletely elucidated. Here, we show that PD mimetics (6-hydroxydopamine, N-methyl-4-phenylpyridine or rotenone) suppressed phosphorylation of mTOR, S6K1 and 4E-BP1, reduced cell viability, and activated caspase-3 and PARP in PC12 cells and primary neurons. Overexpression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 in PC12 cells partially prevented cell death in response to the PD toxins, revealing that mTOR-mediated S6K1 and 4E-BP1 pathways due to the PD toxins were inhibited, leading to neuronal cell death. Furthermore, we found that the inhibition of mTOR signaling contributing to neuronal cell death was attributed to suppression of Akt and activation of AMPK. This is supported by the findings that ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPKα with compound C partially attenuated inhibition of phosphorylation of mTOR, S6K1 and 4E-BP1, activation of caspase-3, and neuronal cell death triggered by the PD toxins. The results indicate that PD stresses activate AMPK and inactivate Akt, causing neuronal cell death via inhibiting mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that proper co-manipulation of AMPK/Akt/mTOR signaling may be a potential strategy for prevention and treatment of PD.
    Cellular signalling 04/2014; · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many neurological and neurodegenerative diseases are associated with oxidative stress and glial inflammation, all related to endoplasmic reticulum stress. Cyclo(His-Pro) is an endogenous cyclic dipeptide that exerts cytoprotection by interfering with the Nrf2-NF-κB systems, the former presiding the antioxidant and the latter the pro-inflammatory cellular response. Here we investigated whether the cyclic dipeptide inhibits glial inflammation thus reducing the detrimental effect of inflammatory neurotoxins on neurons. We found that systemic administration of cyclo(His-Pro) exerts in vivo anti-inflammatory effects in the central nervous system by down-regulating hepatic and cerebral TNFα expression thereby counteracting LPS-induced gliosis. Mechanistic studies indicated that the cyclic dipeptide-mediated effects are achieved through the activation of Nrf2-driven antioxidant response and the inhibition of the pro-inflammatory NF-κB pathway. Moreover, by up-regulating Bip, cyclo(His-Pro) increases the ER stress sensitivity and triggers the unfolded protein response to alleviate the ER stress. These results unveil a novel potential therapeutic use of cyclo(His-Pro) against neuroinflammatory-related diseases and we might now consider its potential anti-inflammatory role in other neuropathological conditions.
    The international journal of biochemistry & cell biology 03/2014; · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities of lipid metabolism through overexpression of fatty acid synthase (FASN) which catalyzes the formation of long-chain fatty acids is associated with the development of inflammatory bowel disease (IBD). C75 is a synthetic α-methylene-γ-butyrolactone compound that inhibits FASN activity. We hypothesized that C75 treatment could effectively reduce the severity of experimental colitis. Male C57BL/6 mice were fed 4% dextran sodium sulfate (DSS) for 7 days. C75 (5 mg/kg body weight) or DMSO (vehicle) was administered intraperitoneally from day 2 to 6. Clinical parameters were monitored daily. Mice were euthanized on day 8 for histological evaluation and measurements of colon length, chemokine, cytokine, and inflammatory mediator expression. C75 significantly reduced body weight loss from 23% to 15% on day 8, compared with the vehicle group. The fecal bleeding, diarrhea, and colon histological damage scores in the C75-treated group were significantly lower than those in the vehicle animals. Colon shortening was significantly improved after C75 treatment. C75 protected colon tissues from DSS-induced apoptosis by inhibiting caspase-3 activity. Macrophage inflammatory protein 2, keratinocyte-derived chemokine, myeloperoxidase activity, and proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the colon were significantly down-regulated in the C75-treated group, compared with the vehicle group. Treatment with C75 in colitis mice inhibited the elevation of FASN, cyclooxygenase-2, and inducible nitric oxide synthase expression as well as IκB degradation in colon tissues. C75 administration alleviates the severity of colon damage and inhibits the activation of inflammatory pathways in DSS-induced colitis. Thus, inhibition of FASN may represent an attractive therapeutic potential for treating IBD.
    Molecular Medicine 11/2013; · 4.47 Impact Factor

Full-text (3 Sources)

Available from
May 21, 2014