Indoor carbon monoxide and PM2.5 concentrations by cooking fuels in Pakistan.

Department of Public Health Sciences, University of California at Davis, CA, USA.
Indoor Air (Impact Factor: 3.3). 12/2008; 19(1):75-82. DOI: 10.1111/j.1600-0668.2008.00563.x
Source: PubMed

ABSTRACT In developing countries biomass combustion is a frequently used source of domestic energy and may cause indoor air pollution. Carbon monoxide (CO)and particulate matter with an aerodynamic diameter of 2.5 lm or less (PM2.5)were measured in kitchens using wood or natural gas (NG) in a semi-rural community in Pakistan. Daytime CO and PM2.5 levels were measured for eight continuous hours in 51 wood and 44 NG users from December 2005 to April 2006. The laser photometer PM2.5 (Dustrak, TSI) was calibrated for field conditions and PM2.5 measurements were reduced by a factor of 2.77. CO was measured by an electrochemical monitor (Model T15v, Langan). The arithmetic mean for daytime CO concentration was 29.4 ppm in wood users; significantly higher than 7.5 ppm in NG users (P < 0.001). The arithmetic mean for daytime PM2.5 concentrations was 2.74 mg/m3 in wood users; significantly higher than 0.38 mg/m3 in NG users (P < 0.001). Higher peak levels of CO and PM2.5 were also observed in wood users. Time spent in the kitchen during fuel burning was significantly related to increasing CO and PM2.5 concentrations in wood users.These findings suggest that cooking with wood fuel may lead to hazardous concentrations of CO and PM2.5. PRACTICAL IMPLICATIONS: Biomass combustion is frequently used in developing countries for cooking. This study showed very high level of air pollution in kitchens using wood as the cooking fuel. Many people, especially women and children, are vulnerable to exposure to very high levels of air pollutants as they spend time in the kitchen during cooking hours.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genotoxicity of indoor air pollution from biomass burning was evaluated in buccal epithelial cells (BECs) of 85 pre-menopausal Indian women who were engaged in cooking with biomass (wood, dung, crop residues) and 76 age-matched control women who were cooking with cleaner fuel liquefied petroleum gas (LPG). DNA damage was evaluated by comet assay and fast halo assay (FHA). The concentrations of particulate matter with aerodynamic diameters of less than 10 and 2.5 μm (PM(10) and PM(2.5), respectively) in indoor air were measured by real-time aerosol monitor. Generation of reactive oxygen species (ROS) was measured by flow cytometry and the level of superoxide dismutase (SOD) by spectrophotometry. Compared with control, BEC of biomass users illustrated 2.6-times higher comet tail % DNA (32.2 vs. 12.4, p < 0.001), 2.7-times greater comet tail length (37.8 μm vs. 14.2 μm, p < 0.001) and 2.2-times more olive tail moment (7.1 vs. 3.2, p < 0.001), suggesting marked increase in DNA damage. FHA also showed 5-times more mean nuclear diffusion factor (9.2 vs. 1.8, p < 0.0001) in BEC of biomass users, confirming sharp rise in DNA single strand breaks. Airway cells of biomass-using women showed 51% rise in ROS generation but 28% reduction in SOD, suggesting oxidative stress in the airways. Indoor air of biomass-using households had 3-times more PM(10) and PM(2.5) than LPG-using families, and DNA damage showed positive association with PM(10) and PM(2.5) levels controlling education, kitchen location and family income as potential confounders. In summary, chronic inhalation of biomass smoke elicits oxidative stress and extensive DNA damage in BEC.
    International Journal of Hygiene and Environmental Health 05/2011; 214(4):311-8. · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One largely unstudied benefit of relocating families from slums to public housing is the potential improvement in indoor air quality (IAQ). We compared families that moved from slums to public housing with those that remained living in slums in Santiago, Chile in terms of fine particulate matter (PM2.5) as main indicator of change. A cross-sectional study of 98 relocated families and 71 still living in slums was carried out, obtaining indoor and outdoor samples by a Personal Environmental Monitor. Home characteristics, including indoor air pollution sources were collected through questionnaires. Multivariate regression models included the intervention (public housing or slum), indoor pollution sources, outdoor PM2.5 and family characteristics as predictors. Indoor PM2.5 concentrations were higher in slums (77.8 μg m−3 [SD = 35.7 μg m−3]) than in public housing (55.7 μg m−3 [SD = 34.6 μg m−3], p < 0.001). Differences between indoor and outdoor PM2.5 were significant only in the slum houses. The multivariate analysis showed that housing intervention significantly decreased indoor PM2.5 (10.4 μg m−3) after adjusting by the other predictors. Outdoor PM2.5 was the main predictor of indoor PM2.5. Other significant factors were water heating fuels and indoor smoking. Having infants 1–23 months was associated with a lowering of indoor PM2.5. Our results suggest that a public housing program that moves families from slums to public housing improves indoor air quality directly and also indirectly through air pollution sources.
    Atmospheric Environment 05/2013; 70:179-185. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Pakistan, almost 70% of the population lives in rural areas. Ninety-four percent of households in rural areas and 58% in urban areas depend on biomass fuels (wood, dung, and agricultural waste). These solid fuels have poor combustion efficiency. Due to incomplete combustion of the biomass fuels, the resulting smoke contains a range of health-deteriorating substances that, at varying concentrations, can pose a serious threat to human health. Indoor air pollution accounts for 28,000 deaths a year and 40 million cases of acute respiratory illness. It places a significant economic burden on Pakistan with an annual cost of 1% of GDP. Despite the mounting evidence of an association between indoor air pollution and ill health, policy makers have paid little attention to it. This review analyzes the existing information on levels of indoor air pollution in Pakistan and suggests suitable intervention methods. This review is focused on studies of indoor air pollution, due to biomass fuels, in Pakistan published in both scientific journals and by the Government and international organizations. In addition, the importance of environmental tobacco smoke as an indoor pollutant is highlighted. Unlike many other developing countries, there are no long-term studies on the levels of indoor air pollution. The limited studies that have been undertaken indicate that indoor air pollution should be a public health concern. High levels of particulate matter and carbon monoxide have been reported, and generally, women and children are subject to the maximum exposure. There have been a few interventions, with improved stoves, in some areas since 1990. However, the effectiveness of these interventions has not been fully evaluated. Indoor air pollution has a significant impact on the health of the population in Pakistan. The use of biomass fuel as an energy source is the biggest contributor to poor indoor air quality followed by smoking. In order to arrest the increasing levels of indoor pollution, there is a dire need to recognize it as a major health hazard and formulate a national policy to combat it. An integrated effort, with involvement of all stakeholders, could yield promising results. A countrywide public awareness campaign, on the association of indoor air pollution with ill health, followed by practical intervention would be an appropriate approach. Due to the current socioeconomic conditions in the country, development and adoption of improved cooking stoves for the population at large would be the most suitable choice. However, the potential of biogas as a fuel should be explored further, and modern fuels (natural gas and LPG) need to be accessible and economical. Smoking in closed public spaces should be banned, and knowledge of the effect of smoking on indoor air quality needs to be quantified.
    Environmental Science and Pollution Research 02/2010; 17(6):1187-96. · 2.76 Impact Factor


Available from