Indoor carbon monoxide and PM2.5 concentrations by cooking fuels in Pakistan.

Department of Public Health Sciences, University of California at Davis, CA, USA.
Indoor Air (Impact Factor: 4.2). 12/2008; 19(1):75-82. DOI: 10.1111/j.1600-0668.2008.00563.x
Source: PubMed

ABSTRACT In developing countries biomass combustion is a frequently used source of domestic energy and may cause indoor air pollution. Carbon monoxide (CO)and particulate matter with an aerodynamic diameter of 2.5 lm or less (PM2.5)were measured in kitchens using wood or natural gas (NG) in a semi-rural community in Pakistan. Daytime CO and PM2.5 levels were measured for eight continuous hours in 51 wood and 44 NG users from December 2005 to April 2006. The laser photometer PM2.5 (Dustrak, TSI) was calibrated for field conditions and PM2.5 measurements were reduced by a factor of 2.77. CO was measured by an electrochemical monitor (Model T15v, Langan). The arithmetic mean for daytime CO concentration was 29.4 ppm in wood users; significantly higher than 7.5 ppm in NG users (P < 0.001). The arithmetic mean for daytime PM2.5 concentrations was 2.74 mg/m3 in wood users; significantly higher than 0.38 mg/m3 in NG users (P < 0.001). Higher peak levels of CO and PM2.5 were also observed in wood users. Time spent in the kitchen during fuel burning was significantly related to increasing CO and PM2.5 concentrations in wood users.These findings suggest that cooking with wood fuel may lead to hazardous concentrations of CO and PM2.5. PRACTICAL IMPLICATIONS: Biomass combustion is frequently used in developing countries for cooking. This study showed very high level of air pollution in kitchens using wood as the cooking fuel. Many people, especially women and children, are vulnerable to exposure to very high levels of air pollutants as they spend time in the kitchen during cooking hours.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genotoxicity of indoor air pollution from biomass burning was evaluated in buccal epithelial cells (BECs) of 85 pre-menopausal Indian women who were engaged in cooking with biomass (wood, dung, crop residues) and 76 age-matched control women who were cooking with cleaner fuel liquefied petroleum gas (LPG). DNA damage was evaluated by comet assay and fast halo assay (FHA). The concentrations of particulate matter with aerodynamic diameters of less than 10 and 2.5 μm (PM(10) and PM(2.5), respectively) in indoor air were measured by real-time aerosol monitor. Generation of reactive oxygen species (ROS) was measured by flow cytometry and the level of superoxide dismutase (SOD) by spectrophotometry. Compared with control, BEC of biomass users illustrated 2.6-times higher comet tail % DNA (32.2 vs. 12.4, p < 0.001), 2.7-times greater comet tail length (37.8 μm vs. 14.2 μm, p < 0.001) and 2.2-times more olive tail moment (7.1 vs. 3.2, p < 0.001), suggesting marked increase in DNA damage. FHA also showed 5-times more mean nuclear diffusion factor (9.2 vs. 1.8, p < 0.0001) in BEC of biomass users, confirming sharp rise in DNA single strand breaks. Airway cells of biomass-using women showed 51% rise in ROS generation but 28% reduction in SOD, suggesting oxidative stress in the airways. Indoor air of biomass-using households had 3-times more PM(10) and PM(2.5) than LPG-using families, and DNA damage showed positive association with PM(10) and PM(2.5) levels controlling education, kitchen location and family income as potential confounders. In summary, chronic inhalation of biomass smoke elicits oxidative stress and extensive DNA damage in BEC.
    International Journal of Hygiene and Environmental Health 05/2011; 214(4):311-8. DOI:10.1016/j.ijheh.2011.04.003 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over one-quarter of the world's population relies on fuel-based lighting. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel-based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM(2.5) concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM(2.5) and PM(10) concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM(2.5) and PM(10), but will be exposed to elevated 0.02-0.3 μm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM(2.5) mass if they switched from a simple wick lamp to an electric lighting technology. PRACTICAL IMPLICATIONS: Changing lighting technologies to achieve increased efficiency and energy service levels can provide ancillary health benefits. The cheapest, crudest kerosene lamps emit the largest amounts of PM(2.5). Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.
    Indoor Air 05/2010; 20(5):399-411. DOI:10.1111/j.1600-0668.2010.00664.x · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shifting seasons greatly influence the use and management practices in residential built environments which subsequently affect the level of exposure to various pollutants indoors. The levels of fine particulate matter (PM2.5) were monitored in fifteen households of Lahore, Pakistan during different seasons. DustTrak aerosol monitors (model 8520, TSI Inc.) were run simultaneously in the kitchens and living rooms of the selected sites for seventy two hours each. To aid analysis, houses were categorized in three groups according to floor area. For non–smoking houses there was little variation between 24 h average PM2.5 concentrations in kitchens (270 to 295 µg/m³) although there was an increase in concentrations in living rooms as floor area increased. Across all houses the average PM2.5 concentration was observed to vary during the seasons. In the kitchens the average PM levels were 326 µg/m³ during the spring falling to 133 µg/m³ in summer, 180 µg/m³ in monsoon, 395 µg/m³ in autumn and 448 µg/m³ during the winter. Similarly, in the living rooms, the mean PM levels observed were 190 µg/m³ in spring, 101 µg/m³ in summer, 158 µg/m³ in monsoon, 458 µg/m³ in autumn and 590 µg/m³ in winter. Factors contributing towards these levels were cooking (involving frequent frying), floor sweeping, and also movement of the occupants. Smoking at two sites and use of gas heaters during the winter were also identified as contributing sources. Apart from these sources, ventilation was identified to be the most singular attributing factor to the above mentioned variations in PM levels. Ventilation during the warm season ranged from 3.51 air changes per hour (ACH) to 7.68 ACH. On the contrary, ventilation decreased during the autumn and winter season (2.5 to 5.64 ACH) and this resulted in an accumulation of PM indoors. The levels of fine particulate matter were observed to be 3 to 23 times higher than the WHO established standard of 25 µg/m³.
    Atmospheric Pollution Research 06/2015; 6(5). DOI:10.5094/APR.2015.088 · 1.23 Impact Factor


Available from