Article

Caloric restriction and aging: studies in mice and monkeys.

Wisconsin National Primate Research Center, Madison, Wisconsin, USA.
Toxicologic Pathology (Impact Factor: 1.92). 01/2009; 37(1):47-51. DOI: 10.1177/0192623308329476
Source: PubMed

ABSTRACT It is widely accepted that caloric restriction (CR) without malnutrition delays the onset of aging and extends lifespan in diverse animal models including yeast, worms, flies, and laboratory rodents. The mechanism underlying this phenomenon is still unknown. We have hypothesized that a reprogramming of energy metabolism is a key event in the mechanism of CR (Anderson and Weindruch 2007). Data will be presented from studies of mice on CR, the results of which lend support to this hypothesis. Effects of long-term CR (but not short-term CR) on gene expression in white adipose tissue (WAT) are overt. In mice and monkeys, a chronic 30% reduction in energy intake yields a decrease in adiposity of approximately 70%. In mouse epididymal WAT, long-term CR causes overt shifts in the gene expression profile: CR increases the expression of genes involved in energy metabolism (Higami et al. 2004), and it down-regulates the expression of more than 50 pro-inflammatory genes (Higami et al. 2006). Whether aging retardation occurs in primates on CR is unknown. We have been investigating this issue in rhesus monkeys subjected to CR since 1989 and will discuss the current status of this project. A new finding from this project is that CR reduces the rate of age-associated muscle loss (sarcopenia) in monkeys (Colman et al. 2008).

1 Bookmark
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-living Ames dwarf (df/df) mice are homozygous for a mutation of theProp1df gene. As a result, mice are deficient in growth hormone (GH), prolactin (PRL) and thyrotropin (TSH). In spite of the hormonal deficiencies, df/df mice live significantly longer and healthier lives compared to their wild type siblings. We studied the effects of calorie restriction (CR) on the expression of insulin signaling genes in skeletal muscle and adipose tissue of normal and df/df mice. The analysis of genes expression showed that CR differentially affects the insulin signaling pathway in these insulin target organs. Moreover, results obtained in both normal and Ames dwarf mice indicate more direct effects of CR on insulin signaling genes in adipose tissue than in skeletal muscle. Interestingly, CR reduced the protein levels of adiponectin in the epididymal adipose tissue of normal and Ames dwarf mice, while elevating adiponectin levels in skeletal muscle and plasma of normal mice only.
    Aging 10/2014; 6(10):900-12. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer patients undergoing chemotherapy treatment are advised to increase food intake to overcome the therapy-induced side effects, and weight loss. Dietary restriction is known to slow down the aging process and hence reduce age-related diseases such as cancer. Fasting or short-term starvation is more effective than dietary restriction to prevent cancer growth since starved cells switch off signals for growth and reproduction and enter a protective mode, while cancer cells, being mutated, are not sensitized by any external growth signals and are not protected against any stress. This phenomenon is known as differential stress resistance (DSR). Nutrient signaling pathways involving growth hormone/insulin-like growth factor-1 axis and its downstream effectors, play a key role in DSR in response to starvation controlling the other cell maintenance systems, such as autophagy and apoptosis, that are related to the tumorigenesis. Yeast cells lacking these effectors are better protected against oxidative stress compared to normal cells. In the same way, starvation protects many cell lines and mice against high-dose chemotherapeutic drugs. According to a series of studies, fasting results in overall reduction in chemotherapy side effects in cancer patients. Data shows that starvation-dependent differential chemotherapy is safe, feasible and effective in cancer treatment, but the possible side effects of starvation limit its efficacy. However, further studies and clinical trials may result in its implementation in cancer treatment.
    Oman Medical Journal. 11/2014; 29(6):391-398.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is the most significant risk factor for a range of prevalent diseases, including cancer, cardiovascular disease, and diabetes. Accordingly, interventions are needed for delaying or preventing disorders associated with the ageing process, i.e., promotion of healthy ageing. Calorie restriction is the only nongenetic and the most robust approach to slow the process of ageing in evolutionarily divergent species, ranging from yeasts, worms, and flies to mammals. Although it has been known for more than 80 years that calorie restriction increases lifespan, a mechanistic understanding of this phenomenon remains elusive. Yeast silent information regulator 2 (Sir2), the founding member of the sirtuin family of protein deacetylases, and its mammalian homologue Sir2-like protein 1 (SIRT1), have been suggested to promote survival and longevity of organisms. SIRT1 exerts protective effects against a number of age-associated disorders. Caloric restriction increases both Sir2 and SIRT1 activity. This review focuses on the mechanistic insights between caloric restriction and Sir2/SIRT1 activation. A number of molecular links, including nicotinamide adenine dinucleotide, nicotinamide, biotin, and related metabolites, are suggested to be the most important conduits mediating caloric restriction-induced Sir2/SIRT1 activation and lifespan extension.
    Diabetes & metabolism journal 10/2014; 38(5):321-9.

Preview

Download
0 Downloads
Available from