Down-Regulation of hsa-miR-10a in Chronic Myeloid Leukemia CD34(+) Cells Increases USF2-Mediated Cell Growth

Universidad de Navarra, Iruña, Navarre, Spain
Molecular Cancer Research (Impact Factor: 4.5). 01/2009; 6(12):1830-40. DOI: 10.1158/1541-7786.MCR-08-0167
Source: PubMed

ABSTRACT MicroRNAs (miRNA) are small noncoding, single-stranded RNAs that inhibit gene expression at a posttranscriptional level, whose abnormal expression has been described in different tumors. The aim of our study was to identify miRNAs potentially implicated in chronic myeloid leukemia (CML). We detected an abnormal miRNA expression profile in mononuclear and CD34(+) cells from patients with CML compared with healthy controls. Of 157 miRNAs tested, hsa-miR-10a, hsa-miR-150, and hsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML cells. Down-regulation of hsa-miR-10a was not dependent on BCR-ABL1 activity and contributed to the increased cell growth of CML cells. We identified the upstream stimulatory factor 2 (USF2) as a potential target of hsa-miR-10a and showed that overexpression of USF2 also increases cell growth. The clinical relevance of these findings was shown in a group of 85 newly diagnosed patients with CML in which expression of hsa-miR-10a was down-regulated in 71% of the patients, whereas expression of USF2 was up-regulated in 60% of the CML patients, with overexpression of USF2 being significantly associated with decreased expression of hsa-miR-10a (P = 0.004). Our results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of CML.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and ‘indolent’ symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.
    Annals of Hematology 04/2015; 94(2). DOI:10.1007/s00277-015-2325-z · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leukemias expressing the constitutively activated tyrosine kinases (TKs) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSBs) and error-prone repair. The non-homologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIalpha (LIG3) and poly (ADP-ribose)polymerase (PARP1), increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22 which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia (CML) human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression leads to genomic instability via augmented expression of ALTNHEJ repair factors that generate repair errors. In the context of TK-activated leukemias c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets. Copyright © 2014, American Association for Cancer Research.
    Molecular Cancer Research 03/2015; 13(4). DOI:10.1158/1541-7786.MCR-14-0422 · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allogeneic hematopoietic stem cell transplantation (HCT) is a well-established treatment for many malignant and non-malignant hematological disorders. As frequent complication in up to 50 % of all patients, graft-versus-host disease (GVHD) is still the main cause for morbidity and non-relapse mortality. Diagnosis of GVHD is usually done clinically, even though confirmation by pathology is often used to support the clinical findings. Effective treatment requires intensified immunosuppression as early as possible. Although several promising biomarkers have been proposed for an early diagnosis, no internationally recognized consensus has yet been established. Here, microRNAs (miRs) represent an interesting tool since miRs have been recently reported to be an important regulator of various cells, including immune cells such as T cells. Therefore, we could assume that miRs play a key role in the pathogenesis of acute GVHD, and their detection might be an interesting possibility in the early diagnosis and monitoring of acute GVHD. Recent studies additionally demonstrated the implication of miRs in the pathogenesis of acute GVHD. In this review, we aim to summarize the previous reports of miRs, focusing on the pathogenesis of acute GVHD and possible implications in diagnostic approaches.
    Annals of Hematology 04/2015; 94(7). DOI:10.1007/s00277-015-2369-0 · 2.40 Impact Factor