Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2009; 105(51):20167-72. DOI: 10.1073/pnas.0809257105
Source: PubMed

ABSTRACT Immunoglobulin G plays a vital role in adaptive immunity and antibody-based therapy through engagement of its Fc region by the Fc gamma receptors (Fc gammaRs) on immune cells. In addition to specific protein-protein contacts, N-linked glycosylation of the IgG Fc has been thought to be essential for the recognition of Fc by Fc gammaR. This requirement for the N-linked glycan has limited biomanufacture of therapeutic antibodies by restricting it to mammalian expression systems. We report here aglycosylated Fc domain variants that maintain engagement to Fc gammaRs, both in vitro and in vivo, demonstrating that Fc glycosylation is not strictly required for the activation of immune cells by IgG. These variants provide insight into how the N-linked glycan is used biologically in the recognition of Fc by Fc gammaRs, as well as represent a step toward the production in alternative expression systems of antibody-based therapeutics capable of eliciting immune effector functions.

Download full-text


Available from: Bruce Tidor, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhancing the effector function by optimizing the interaction between Fc and Fcγ receptor (FcγR) is a promising approach to enhance the potency of anticancer monoclonal antibodies (mAbs). To date, a variety of Fc engineering approaches to modulate the interaction have been reported, such as afucosylation in the heavy chain Fc region or symmetrically introducing amino acid substitutions into the region, and there is still room to improve FcγR binding and thermal stability of the CH2 domain with these approaches. Recently, we have reported that asymmetric Fc engineering, which introduces different substitutions into each Fc region of heavy chain, can further improve the FcγR binding while maintaining the thermal stability of the CH2 domain by fine-tuning the asymmetric interface between the Fc domain and FcγR. However, the structural mechanism by which the asymmetrically engineered Fc improved FcγR binding remained unclear. In order to elucidate the mechanism, we solved the crystal structure of a novel asymmetrically engineered Fc, asym-mAb23, in complex with FcγRIIIa. Asym-mAb23 has enhanced binding affinity for both FcγRIIIa and FcγRIIa at the highest level of previously reported Fc variants. The structural analysis reveals the features of the asymmetrically engineered Fc in comparison with symmetric Fc and how each asymmetrically introduced substitution contributes to the improved interaction between asym-mAb23 and FcγRIIIa. This crystal structure could be utilized to enable us to design a more potent asymmetric Fc.
    Molecular Immunology 12/2013; 58(1):132-138. DOI:10.1016/j.molimm.2013.11.017
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After the appearance of the first FDA-approved antibody 25 years ago, antibodies have become major therapeutic agents in the treatment of many human diseases, including cancer and infectious diseases, and the use of antibodies as therapeutic/diagnostic agents is expected to increase in the future. So far, a variety of strategies have been devised for engineering of these fascinating molecules to develop superior properties and functions. Recent progress in systems biology has provided more information about the structures and cellular networks of antibodies, and, in addition, recent development of biotechnology tools, particularly in regard to high-throughput screening, has made it possible to perform more intensive engineering on these substances. Based on a sound understanding and new technologies, antibodies are now being developed as more powerful drugs. In this review, we highlight the recent, significant progress that has been made in antibody engineering, with a particular focus on Fc engineering and glycoengineering for improved functions, and cellular engineering for enhanced production of antibodies in yeast and bacterial hosts.
    Biotechnology Journal 01/2011; 6(1):16-27. DOI:10.1002/biot.201000381
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutagenesis directed to a specific glycosylation site has been widely used to examine biological roles of individual glycans. However, occurrence of any post-translational modification on such deglycosylated mutants has not yet been well characterized. Here we performed mass spectrometric analyses of the Fc fragment of an unglycosylated mutant of mouse immunoglobulin G2b, whose conserved N-glycosylation site, i.e. Asn297, was substituted with alanine. We found that a major part of this mutant is sulfated at Tyr296, which adjacently precedes the originally glycosylated site. Our findings demonstrate that mutational deglycosylation can induce an unexpected post-translational modification in the protein.
    FEBS letters 08/2010; 584(15):3474-9. DOI:10.1016/j.febslet.2010.07.004