Article

Nephronophthisis

Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, UK.
European journal of human genetics: EJHG (Impact Factor: 4.23). 04/2009; 17(4):406-16. DOI: 10.1038/ejhg.2008.238
Source: PubMed

ABSTRACT Nephronophthisis (NPHP) is an autosomal recessive kidney disorder characterized by chronic tubulointerstitial nephritis and leading to end-stage renal failure. NPHP as a renal entity is often part of a multisystem disorder and has been associated with many syndromes including Joubert syndrome (and related disorders) and Senior-Loken syndrome. Recent molecular genetic advances have allowed identification of several genes underlying NPHP. Most of these genes express their protein products, named nephrocystins, in primary cilial/basal body structures. Some nephrocystins are part of adherens junction and focal adhesion kinase protein complexes. This shared localization suggests that common pathogenic mechanisms within the kidney underlie this disease. Functional studies implicate nephrocystins in planar cell polarity pathways, which may be crucial for renal development and maintenance of tubular architecture.

Download full-text

Full-text

Available from: John Sayer, Jun 23, 2015
0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity.
    PathoGenetics 06/2009; 2(1):3. DOI:10.1186/1755-8417-2-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF) in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10-15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families.
    05/2011; 2011:527137. DOI:10.4061/2011/527137
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nephronophthisis (NPHP) is a recessive disorder of the kidney that is the leading genetic cause of end-stage renal failure in children. Egypt is a country with a high rate of consan-guineous marriages; yet, only a few studies have investigated the clinical and molecular charac-teristics of NPHP and related ciliopathies in the Egyptian population. We studied 20 children, from 17 independent families, fulfilling the clinical and the ultrasonographic criteria of NPHP. Analysis for a homozygous deletion of the NPHP1 gene was performed by polymerase chain reaction on the genomic DNA of all patients. Patients were best categorized as 75% juvenile NPHP, 5% infantile NPHP, and 20% Joubert syndrome-related disorders (JSRD). The mean age at diagnosis was 87.5 + 45.4 months, which was significantly late as compared with the age at onset of symptoms, 43.8 ± 29.7 months (P <0.01). Homozygous NPHP1 deletions were detected in six patients from five of 17 (29.4%) studied families. Our study demonstrates the clinical phenotype of NPHP and related disorders in Egyptian children. Also, we report that homozygous NPHP1 deletions account for 29.4% of NPHP in the studied families in this cohort, thereby confirming the diagnosis of type-1 NPHP. Moreover, our findings confirm that NPHP1 deletions can indeed be responsible for JSRD.
    Saudi journal of kidney diseases and transplantation: an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia 09/2012; 23(5):1090-8. DOI:10.4103/1319-2442.100968