Article

Labeling stem cells with fluorescent dyes for non-invasive detection with optical imaging.

Contrast Agent Research Group at the Center for Molecular and Functional Imaging, Department of Radiology, University of California San Francisco, USA.
Journal of Visualized Experiments 02/2008; DOI: 10.3791/686
Source: PubMed

ABSTRACT Optical imaging (OI) is an easy, fast and inexpensive tool for in vivo monitoring of new stem cell based therapies. The technique is based on ex vivo labeling of stem cells with a fluorescent dye, subsequent intravenous injection of the labeled cells and visualization of their accumulation in specific target organs or pathologies. The presented technique demonstrates how we label human mesenchymal stem cells (hMSC) by simple incubation with the lipophilic fluorescent dye DiD (C67H103CIN2O3S) and how we label human embryonic stem cells (hESC) with the FDA approved fluorescent dye Indocyanine Green (ICG). The uptake mechanism is via adherence and diffusion of the lypophilic dye across the phospholipid cell membrane bilayer. The labeling efficiency is usually improved if the cells are incubated with the dye in serum-free media as opposed to incubation in serum-containing media. Furthermore, the addition of the transfection agent Protamine Sulfate significantly improves contrast agent uptake.

0 Followers
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research.
    Wiley Interdisciplinary Reviews Systems Biology and Medicine 07/2009; 2(4):398-421. DOI:10.1002/wsbm.71 · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells have been proposed as a promising therapy for treating a wide variety of neuropathologies. While several studies have demonstrated the therapeutic benefits of neural stem cells, the exact mechanism remains elusive. In order to facilitate research efforts to understand these mechanisms, and before neural stem cell-based therapies can be utilized in a clinical context, we must develop means of monitoring these cells in vivo. However, because of tissue depth and the blood-brain barrier, in vivo imaging of neural stem cells in the brain has unique challenges that do not apply to stem cells for other purposes. In this paper, we review contemporary methods for in vivo neural stem cell imaging, including MRI, PET and optical imaging techniques.
    Regenerative Medicine 01/2010; 5(1):73-86. DOI:10.2217/rme.09.79 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human embryonic stem cells (hESCs) hold tremendous therapeutic potential in a variety of diseases. Over the last decade, non-invasive imaging techniques have proven to be of great value in tracking transplanted hESCs. This review article will briefly summarize the various techniques used for non-invasive imaging of hESCs, which include magnetic resonance imaging (MRI), bioluminescence imaging (BLI), fluorescence, single-photon emission computed tomography (SPECT), positron emission tomography (PET), and multimodality approaches. Although the focus of this review article is primarily on hESCs, the labeling/tracking strategies described here can be readily applied to other (stem) cell types as well. Non-invasive imaging can provide convenient means to monitor hESC survival, proliferation, function, as well as overgrowth (such as teratoma formation), which could not be readily investigated previously. The requirement for hESC tracking techniques depends on the clinical scenario and each imaging technique will have its own niche in preclinical/clinical research. Continued evolvement of non-invasive imaging techniques will undoubtedly contribute to significant advances in understanding stem cell biology and mechanisms of action.
    Current pharmaceutical biotechnology 05/2010; 11(6):685-92. DOI:10.2174/1389210204971092010 · 2.51 Impact Factor

Preview

Download
2 Downloads
Available from