Analysis of nucleocytoplasmic shuttling of NF kappa B proteins in human leukocytes.

Department of Biological Sciences, St. John's University, Queens, NY, USA.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2008; 457:279-92.
Source: PubMed


Controlled nucleocytoplasmic localization regulates activity of NF kappa B as well as other transcription factors. Analysis of the nucleocytoplasmic protein shuttling has been greatly facilitated by the use of leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export. The authors have previously shown that LMB inhibits NF kappa B activity in human neutrophils by increasing the nuclear accumulation of NF kappa B inhibitor, I kappa B alpha. In this chapter, the authors describe a protocol that uses LMB to study the nucleocytoplasmic shuttling of I kappa B alpha in human macrophage-like U937 cells, thus inhibiting NF kappa B activity. This protocol should be readily adaptable to analyze the nucleocytoplasmic shuttling of other proteins in human leukocytes.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have recently identified two promoters, distal and proximal for rat mitochondrial glycerophosphate acyltransferase (mtGPAT). Here we are reporting further characterization of the promoters. Insulin and epidermal growth factor (EGF) stimulated while leptin and glucagon inhibited the luciferase activity of the distal promoter and the amounts of the distal transcript. Conversely, luciferase activity of the proximal promoter and proximal transcript remained unchanged due to these treatments. Only the distal promoter has binding sites for carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1 (SREBP-1). Electromobility shift assays and chromatin immunoprecipitation assays demonstrated that ChREBP and SREBP-1 bind to the mtGPAT distal promoter. Insulin and EGF increased while glucagon and leptin decreased the binding of SREBP-1 and ChREBP to the distal promoter. Thus, the distal promoter is the regulatory promoter while the proximal promoter acts constitutively for rat mtGPAT gene under the influence of hormones and growth factor.
    Archives of Biochemistry and Biophysics 10/2009; 490(2-490):85-95. DOI:10.1016/ · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that increased nuclear accumulation of IkappaBalpha inhibits NF-kappaB activity and induces apoptosis in human leukocytes. In this study, we wanted to explore the possibility that the nucleocytoplasmic distribution of IkappaBalpha can be used as a therapeutic target for the regulation of NF-kappaB-dependent cytokine synthesis. Treatment of LPS-stimulated human U937 macrophages with an inhibitor of chromosome region maintenance 1-dependent nuclear export, leptomycin B, resulted in the increased nuclear accumulation of IkappaBalpha and inhibition of NF-kappaB DNA binding activity, caused by the nuclear IkappaBalpha-p65 NF-kappaB interaction. Surprisingly, however, whereas mRNA expression and cellular release of TNF-alpha, the beta form of pro-IL-1 (IL-1beta), and IL-6 were inhibited by the leptomycin B-induced nuclear IkappaBalpha, IL-8 mRNA expression and cellular release were not significantly affected. Analysis of in vivo recruitment of p65 NF-kappaB to NF-kappaB-regulated promoters by chromatin immunoprecipitation in U937 cells and human PBMCs indicated that although the p65 recruitment to TNF-alpha, IL-1beta, and IL-6 promoters was inhibited by the nuclear IkappaBalpha, p65 recruitment to IL-8 promoter was not repressed. Chromatin immunoprecipitation analyses using IkappaBalpha and S536 phosphospecific p65 NF-kappaB Abs demonstrated that although the newly synthesized IkappaBalpha induced by postinduction repression is recruited to TNF-alpha, IL-1beta, and IL-6 promoters but not to the IL-8 promoter, S536-phosphorylated p65 is recruited to IL-8 promoter, but not to TNF-alpha, IL-1beta, or IL-6 promoters. Together, these data indicate that the inhibition of NF-kappaB-dependent transcription by nuclear IkappaBalpha in LPS-stimulated macrophages is gene specific and depends on the S536 phosphorylation status of the recruited p65 NF-kappaB.
    The Journal of Immunology 09/2010; 185(6):3685-93. DOI:10.4049/jimmunol.0902230 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters.
    Molecular Cancer Research 02/2011; 9(2):183-94. DOI:10.1158/1541-7786.MCR-10-0368 · 4.38 Impact Factor
Show more