Article

Small strain deformation measurements of konjac glucomannan solutions and the influence of borate cross-linking.

Centre for Water Soluble Polymers, Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, UK. Electronic address: .
Carbohydrate polymers 06/2013; 95(1):272-81. DOI: 10.1016/j.carbpol.2013.02.024
Source: PubMed

ABSTRACT The dynamic rheology of aqueous solutions of konjac glucomannan has been evaluated over a range of concentrations up to 2.35%, and the effect of borate cross-linking of such solutions evaluated in the range 0.02-40mM borate. In preliminary work, conventional parallel plate geometries were employed and in situ cross-linking was investigated. For borate cross-linked samples a superior method, however, was found to be measurement of pre-formed cores of cross-linked polymer into which a four-bladed vane geometry was introduced. In order to compare with other associating polymer systems, rheological data were analysed by defining plateau moduli, corresponding relaxation times and zero shear viscosities and the scaling behaviour of these parameters with polymer and cross-linker concentrations was established. Maxwell fits and time-concentration superposition procedures were investigated. The rheological properties of the cross-linked polymer were shown to be the result of both increased network connectivity and retarded network dynamics.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, an approach to improve several konjac flour (KF) qualities by dimethyl sulfoxide (DMSO) addition using various concentrations at different temperature levels was proposed. Also, various properties of native and refined KF, including transparency, chemical composition and rheological properties have been investigated. The results showed that the KF refined by 75% DMSO achieved 27.7% improvement in transparency, 99.7% removal of starch, 99.4% removal of soluble sugar, and 98.2% removal of protein as well as more satisfactory viscosity stability. In addition, the morphology structure of refined KF showed a significant difference compared with the native one as observed using the SEM, which is promising for further industrial application. Furthermore, the rheological properties of both native and refined konjac sols were studied and the results showed that DMSO refinement is an effective and alternative approach to improve the qualities of KF in many aspects.
    Carbohydrate polymers. 01/2014; 99:173-9.