The Lack of Maturation of Ebola Virus-Infected Dendritic Cells Results from the Cooperative Effect of at Least Two Viral Domains

Departments of Pathology and.
Journal of Virology (Impact Factor: 4.44). 04/2013; 87(13). DOI: 10.1128/JVI.03316-12
Source: PubMed


Ebola virus (EBOV) infections are characterized by deficient T lymphocyte responses, T lymphocyte apoptosis and lymphopenia, in the absence of direct infection of lymphocytes. In contrast, dendritic cells (DC) are infected but fail to mature appropriately, thereby impairing the T cell response. We investigated the contribution of EBOV proteins in modulating DC maturation by generating recombinant viruses expressing enhanced green fluorescent protein and carrying mutations affecting several potentially immunomodulating domains. These included envelope glycoprotein (GP) domains as well as innate response antagonist domains (IRADs) previously identified in the VP24 and VP35 proteins. GP expressed by an unrelated vector, but not the wild-type EBOV, was found to strongly induce DC maturation, and infections with recombinant EBOV carrying mutations disabling GP functional domains did not restore DC maturation. In contrast, each of the viruses carrying mutations disabling any IRAD in VP35 induced a dramatic upregulation of DC maturation markers. This was dependent on infection, but not interaction with GP. Disabling of IRADs also resulted in a several hundred fold increase in secretion of cytokines and chemokines. Furthermore, these mutations induced formation of homotypic DC clusters, which represent close correlates of their maturation, and presumably facilitate transfer of antigen from migratory DC to lymph node DC. Thus, an individual IRAD is insufficient to suppress DC maturation; rather, the suppression of DC maturation and the "immune paralysis" observed during EBOV infections results from a cooperative effect of two or more individual IRADs.

Download full-text


Available from: Bersabeh Tigabu, Oct 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which these deadly viruses counteract the IFN system. It will be of interest to determine how these differences influence pathogenesis.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 09/2009; 29(9):511-20. DOI:10.1089/jir.2009.0076 · 2.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, ( /) / / / - , is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to "Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1" (with the suffix "rec" identifying the recombinant nature of the virus and "abc1" being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as "EBOV") and abbreviations (such as "EBOV/Kik-abc1") could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. "EBOV" would suffice if only one EBOV strain/variant/isolate is addressed.
    Archives of Virology 11/2013; 159(5). DOI:10.1007/s00705-013-1877-2 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reverse genetics allows the generation of recombinant viruses entirely from cDNA. One application of this technology is the creation of reporter-expressing viruses, which greatly increase the detail and ease with which these viruses can be studied. However, there are a number of challenges when working with reporter-expressing viruses. Both the reporter protein itself as well as the genetic manipulations within the viral genome required for expression of this reporter can result in altered biological properties of the recombinant virus, and lead to attenuation in vitro and/or in vivo. Further, instability of reporter expression and purging of the genetic information encoding for the reporter from the viral genome can be an issue. Finally, a practical challenge for in vivo studies lies in the attenuation of light signals when traversing tissues. Novel expression strategies and the continued development of brighter, red and far-red shifted reporters and the increased use of bioluminescent reporters for in vivo applications promise to overcome some of these limitations in future. However, a "one size fits all" approach to the design of reporter-expressing viruses has thus far not been possible. Rather, a reporter suited to the intended application must be selected and an appropriate expression strategy and location for the reporter in the viral genome chosen. Still, attenuating effects of the reporter on viral fitness are difficult to predict and have to be carefully assessed with respect to the intended application. Despite these limitations the generation of suitable reporter-expressing viruses will become more common as technology and our understanding of the intricacies of viral gene expression and regulation improves, allowing deeper insight into virus biology both in living cells and in animals.
    Antiviral research 01/2014; 103(1). DOI:10.1016/j.antiviral.2014.01.003 · 3.94 Impact Factor
Show more