Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

INSERM U1028 - CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe Dynamique Cérébrale et Cognition, Centre Hospitalier le Vinatier, Batiment 452, 95 Bd Pinel, Bron, F-69500, France. .
Brain (Impact Factor: 10.23). 05/2013; 136(Pt 5):1639-61. DOI: 10.1093/brain/awt082
Source: PubMed

ABSTRACT Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch perception and memory in congenital amusia. They further support the hypothesis that in neurodevelopmental disorders impacting high-level functions (here musical abilities), abnormalities in cerebral processing can be observed in early brain responses.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article presents a critical survey of the prevalent usage of the Montreal Battery of Evaluation of Amusia (MBEA; Peretz et al., 2003) to assess congenital amusia, a neuro-developmental disorder that has been claimed to be present in 4% of the population (Kalmus and Fry, 1980). It reviews and discusses the current usage of the MBEA in relation to cut-off scores, number of used subtests, manner of testing, and employed statistics, as these vary in the literature. Furthermore, data are presented from a large-scale experiment with 228 German undergraduate students who were assessed with the MBEA and a comprehensive questionnaire. This experiment tested the difference between scores that were obtained in a web-based study (at participants' homes) and those obtained under laboratory conditions with a computerized version of the MBEA. In addition to traditional statistical procedures, the data were evaluated using Signal Detection Theory (SDT; Green and Swets, 1966), taking into consideration the individual's ability to discriminate and their response bias. Results show that using SDT for scoring instead of proportion correct offers a bias-free and normally distributed measure of discrimination ability. It is also demonstrated that a diagnosis based on an average score leads to cases of misdiagnosis. The prevalence of congenital amusia is shown to depend highly on the statistical criterion that is applied as cut-off score and on the number of subtests that is considered for the diagnosis. In addition, three different subtypes of amusics were found in our sample. Lastly, significant differences between the web-based and the laboratory group were found, giving rise to questions about the validity of web-based experimentation.
    Frontiers in Human Neuroscience 01/2015; 9:161. DOI:10.3389/fnhum.2015.00161 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific Language impairment (SLI) is a heritable neurodevelopmental disorder diagnosed when a child has difficulties learning to produce and/or understand speech for no apparent reason (Bishop et al., 2012). The verbal difficulties of children with SLI have been largely documented, and a growing number of studies suggest that these children may also have difficulties in processing non-verbal complex auditory stimuli (Brandt et al., 2012; Corriveau et al., 2007). In a recent study, we reported that a large proportion of children with SLI present deficits in music perception (Planchou et al, submitted). Little is known, however, about the singing abilities of children with SLI. In order to investigate whether or not the impairments in expressive language extend to the musical domain, we assessed singing abilities in 8 children with SLI and 15 children with Typical Language Development (TLD) matched for age and non-verbal intelligence. To this aim, we designed a ludic activity consisting of two singing tasks: a pitch-matching and a melodic reproduction task. In the pitch-matching task, the children were requested to sing single notes. In the melodic reproduction task, children were asked to sing short melodies that were either familiar (FAM-SONG and FAM-TUNE conditions) or unfamiliar (UNFAM-TUNE condition). The analysis showed that children with SLI were impaired in the pitch-matching task, with a mean pitch error of 250 cents (mean pitch error for children with TLD: 154 cents). In the melodic reproduction task, we asked 30 healthy adults to rate the quality of the sung productions of the children on a continuous rating scale. The results revealed that singing of children with SLI received lower mean ratings than the children with TLD. Our findings thus indicate that children with SLI showed impairments in musical production and are discussed in light of a general auditory-motor dysfunction in children with SLI.
    Frontiers in Psychology 04/2015; 6. DOI:10.3389/fpsyg.2015.00420 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent years have seen a growing interest in the neuroscience of spontaneous cognition. One form of such cognition is involuntary musical imagery (INMI), the non-pathological and everyday experience of having music in one's head, in the absence of an external stimulus. In this study, aspects of INMI, including frequency and affective evaluation, were measured by self-report in 44 subjects and related to variation in brain structure in these individuals. Frequency of INMI was related to cortical thickness in regions of right frontal and temporal cortices as well as the anterior cingulate and left angular gyrus. Affective aspects of INMI, namely the extent to which subjects wished to suppress INMI or considered them helpful, were related to gray matter volume in right temporopolar and parahippocampal cortices respectively. These results provide the first evidence that INMI is a common internal experience recruiting brain networks involved in perception, emotions, memory and spontaneous thoughts. Copyright © 2015. Published by Elsevier Inc.
    Consciousness and Cognition 05/2015; 35:66-77. DOI:10.1016/j.concog.2015.04.020 · 2.31 Impact Factor