Article

The Genome-wide Patterns of Variation Expose Significant Substructure in a Founder Population

Department of Molecular Medicine, National Public Health Institute and Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.
The American Journal of Human Genetics (Impact Factor: 10.99). 01/2009; 83(6):787-94. DOI: 10.1016/j.ajhg.2008.11.005
Source: PubMed

ABSTRACT Although high-density SNP genotyping platforms generate a momentum for detailed genome-wide association (GWA) studies, an offshoot is a new insight into population genetics. Here, we present an example in one of the best-known founder populations by scrutinizing ten distinct Finnish early- and late-settlement subpopulations. By determining genetic distances, homozygosity, and patterns of linkage disequilibrium, we demonstrate that population substructure, and even individual ancestry, is detectable at a very high resolution and supports the concept of multiple historical bottlenecks resulting from consecutive founder effects. Given that genetic studies are currently aiming at identifying smaller and smaller genetic effects, recognizing and controlling for population substructure even at this fine level becomes imperative to avoid confounding and spurious associations. This study provides an example of the power of GWA data sets to demonstrate stratification caused by population history even within a seemingly homogeneous population, like the Finns. Further, the results provide interesting lessons concerning the impact of population history on the genome landscape of humans, as well as approaches to identify rare variants enriched in these subpopulations.

Full-text

Available from: Juha Saharinen, May 30, 2015
0 Followers
 · 
106 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bronchopulmonary dysplasia (BPD) is a common chronic lung disease associated with very preterm birth. The major risk factors include lung inflammation and lung immaturity. In addition, genetic factors play an important role in susceptibility to moderate-to-severe BPD. In this study, the aim was to investigate whether common polymorphisms of specific genes that are involved in inflammation or differentiation of the lung have influence on BPD susceptibility. Genes encoding interleukin-6 (IL6) and its receptors (IL6R and IL6ST), IL-10 (IL10), tumor necrosis factor (TNF), and glucocorticoid receptor (NR3C1) were assessed for associations with moderate-to-severe BPD susceptibility. Five IL6, nine IL6R, four IL6ST, one IL10, two TNF, and 23 NR3C1 single nucleotide polymorphisms (SNPs) were analyzed in very preterm infants born in northern Finland (56 cases and 197 controls) and Canada (58 cases and 68 controls). IL-6, TNF and gp130 contents in umbilical cord blood, collected from very preterm infants, were studied for associations with the polymorphisms. Epistasis (i.e., interactions between SNPs in BPD susceptibility) was also examined. SNPs showing suggestive associations were analyzed in additional replication populations from Finland (39 cases and 188 controls) and Hungary (29 cases and 40 controls). None of the studied SNPs were associated with BPD nor were the IL6, TNF or IL6ST SNPs associated with cord blood IL-6, TNF and gp130, respectively. However, epistasis analysis suggested that SNPs in IL6ST and IL10 were associated interactively with risk of BPD in the northern Finnish population; however, this finding did not remain significant after correction for multiple testing and the finding was not replicated in the other populations. We conclude that the analyzed SNPs within IL6, IL6R, IL6ST, IL10, TNF, and NR3C1 were not associated with BPD. Furthermore, there was no evidence that the studied SNPs directly contribute to the cord blood protein contents.
    BMC Medical Genetics 11/2014; 15(1):120. DOI:10.1186/s12881-014-0120-7 · 2.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although mtDNA and the non-recombining Y chromosome (NRY) studies continue to provide valuable insights into the genetic history of human populations, recent technical, methodological and computational advances and the increasing availability of large-scale, genome-wide data from contemporary human populations around the world promise to reveal new aspects, resolve finer points, and provide a more detailed look at our past demographic history. Genome-wide data are particularly useful for inferring migrations, admixture, and fine structure, as well as for estimating population divergence and admixture times and fluctuations in effective population sizes. In this review, we highlight some of the stories that have emerged from the analyses of genome-wide SNP genotyping data concerning the human history of Southern Africa, India, Oceania, Island South East Asia, Europe and the Americas and comment on possible future study directions. We also discuss advantages and drawbacks of using SNP-arrays, with a particular focus on the ascertainment bias, and ways to circumvent it.
    01/2015; 6:6. DOI:10.1186/s13323-015-0024-0