Article

CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation.

Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Molecular cell (Impact Factor: 14.61). 01/2009; 32(5):718-26. DOI: 10.1016/j.molcel.2008.10.025
Source: PubMed

ABSTRACT The neuronal gene repressor REST/NRSF recruits corepressors, including CoREST, to modify histones and repress transcription. REST also functions as a tumor suppressor, but the mechanism remains unclear. We identified chromodomain on Y-like (CDYL) as a REST corepressor that physically bridges REST and the histone methylase G9a to repress transcription. Importantly, RNAi knockdown of REST, CDYL, and G9a, but not CoREST, induced oncogenic transformation of immortalized primary human cells and derepression of the proto-oncogene TrkC. Significantly, transgenic expression of TrkC also induced transformation. This implicates CDYL-G9a, but not CoREST, in REST suppression of transformation, possibly by oncogene repression. CDYL knockdown also augments transformation in a cell culture model of cervical cancer, where loss of heterozygosity of the CDYL locus occurs. These findings demonstrate molecular strategies by which REST carries out distinct biological functions via different corepressors and provide critical insights into the role of histone-modifying complexes in regulating cellular transformation.

1 Bookmark
 · 
163 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seizures can give rise to enduring changes that reflect alterations in gene-expression patterns, intracellular and intercellular signaling, and ultimately network alterations that are a hallmark of epilepsy. A growing body of literature suggests that long-term changes in gene transcription associated with epilepsy are mediated via modulation of chromatin structure. One transcription factor in particular, repressor element 1-silencing transcription factor (REST), has received a lot of attention due to the possibility that it may control fundamental transcription patterns that drive circuit excitability, seizures, and epilepsy. REST represses a suite of genes in the nervous system by utilizing nuclear protein complexes that were originally identified as mediators of epigenetic inheritance. Epigenetics has traditionally referred to mechanisms that allow a heritable change in gene expression in the absence of DNA mutation. However a more contemporaneous definition acknowledges that many of the mechanisms used to perpetuate epigenetic traits in dividing cells are utilized by neurons to control activity-dependent gene expression. This review surveys what is currently understood about the role of epigenetic mechanisms in epilepsy. We discuss how REST controls gene expression to affect circuit excitability and neurogenesis in epilepsy. We also discuss how the repressor methyl-CpG-binding protein 2 (MeCP2) and activator cyclic AMP response element binding protein (CREB) regulate neuronal activity and are themselves controlled by activity. Finally we highlight possible future directions in the field of epigenetics and epilepsy.
    Epilepsia 12/2012; 53(s9). · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human neurons are functional over an entire lifetime, yet the mechanisms that preserve function and protect against neurodegeneration during ageing are unknown. Here we show that induction of the repressor element 1-silencing transcription factor (REST; also known as neuron-restrictive silencer factor, NRSF) is a universal feature of normal ageing in human cortical and hippocampal neurons. REST is lost, however, in mild cognitive impairment and Alzheimer's disease. Chromatin immunoprecipitation with deep sequencing and expression analysis show that REST represses genes that promote cell death and Alzheimer's disease pathology, and induces the expression of stress response genes. Moreover, REST potently protects neurons from oxidative stress and amyloid β-protein toxicity, and conditional deletion of REST in the mouse brain leads to age-related neurodegeneration. A functional orthologue of REST, Caenorhabditis elegans SPR-4, also protects against oxidative stress and amyloid β-protein toxicity. During normal ageing, REST is induced in part by cell non-autonomous Wnt signalling. However, in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies, REST is lost from the nucleus and appears in autophagosomes together with pathological misfolded proteins. Finally, REST levels during ageing are closely correlated with cognitive preservation and longevity. Thus, the activation state of REST may distinguish neuroprotection from neurodegeneration in the ageing brain.
    Nature 03/2014; 507(7493):448-54. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We detected and characterized the binding sites of the representative Rest complex components Rest, Sin3A, and Lsd1. We compared their binding patterns in mouse embryonic stem (ES) cells and epiblast stem (EpiS) cells. We found few Rest sites unique to the EpiS cells. The ES-unique site features were distinct from those of the common sites, namely, the signal intensities were weaker, and the characteristic gene function categories differed. Our analyses showed that the Rest binding sites do not always overlap with the Sin3A and Lsd1 binding sites. The Sin3A binding pattern differed remarkably between the ES and EpiS cells and was accompanied by significant changes in acetylated-histone patterns in the surrounding regions. A series of transcriptome analyses in the same cell types unexpectedly showed that the putative target gene transcript levels were not dramatically different despite dynamic changes in the Rest complex binding patterns and chromatin statuses, which suggests that Rest is not the sole determinant of repression at its targets. Nevertheless, we identified putative Rest targets with explicitly enhanced transcription upon Rest knock-down in 143 and 60 common and ES-unique Rest target genes, respectively. Among such sites, several genes are involved in ES cell proliferation. In addition, we also found that long, intergenic non-coding RNAs were apparent Rest targets and shared similar features with the protein-coding target genes. Interestingly, such non-coding target genes showed less conservation through evolution than protein-coding targets. As a result of differences in the components and targets of the Rest complex, its functional roles may differ in ES and EpiS cells.
    PLoS ONE 01/2014; 9(4):e95374. · 3.53 Impact Factor

Full-text (2 Sources)

Download
50 Downloads
Available from
May 26, 2014