Enterococcus faecalis Inhibits Superantigen Toxic Shock Syndrome Toxin-1-Induced Interleukin-8 from Human Vaginal Epithelial Cells through Tetramic Acids

Columbia University, United States of America
PLoS ONE (Impact Factor: 3.23). 04/2013; 8(4):e61255. DOI: 10.1371/journal.pone.0061255
Source: PubMed

ABSTRACT The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an "outside-in" mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections.

Download full-text


Available from: Joseph A Merriman, Sep 02, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The normal microbial flora of the vagina plays an important role in preventing genital and urinary tract infections in women. Thus an accurate understanding of the composition and ecology of the ecosystem is important to understanding the aetiology of these diseases. Common wisdom is that lactobacilli dominate the normal vaginal microflora of post-pubertal women. However, this conclusion is based on methods that require cultivation of microbial populations; an approach that is known to yield a biased and incomplete assessment of microbial community structure. In this study cultivation-independent methods were used to analyse samples collected from the mid-vagina of five normal healthy Caucasian women between the ages of 28 and 44. Total microbial community DNA was isolated following resuspension of microbial cells from vaginal swabs. To identify the constituent numerically dominant populations in each community 16S rRNA gene libraries were prepared following PCR amplification using the 8f and 926r primers. From each library, the DNA sequences of approximately 200 16S rRNA clones were determined and subjected to phylogenetic analyses. The diversity and kinds of organisms that comprise the vaginal microbial community varied among women. Species of Lactobacillus appeared to dominate the communities in four of the five women. However, the community of one woman was dominated by Atopobium sp., whereas a second woman had appreciable numbers of Megasphaera sp., Atopobium sp. and Leptotrichia sp., none of which have previously been shown to be common members of the vaginal ecosystem. Of the women whose communities were dominated by lactobacilli, there were two distinct clusters, each of which consisted of a single species. One class consisted of two women with genetically divergent clones that were related to Lactobacillus crispatus, whereas the second group of two women had clones of Lactobacillus iners that were highly related to a single phylotype. These surprising results suggest that culture-independent methods can provide new insights into the diversity of bacterial species found in the human vagina, and this information could prove to be pivotal in understanding risk factors for various infectious diseases.
    Microbiology 09/2004; 150(Pt 8):2565-73. DOI:10.1099/mic.0.26905-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reutericyclin is an inhibitory compound produced by sourdough isolates of Lactobacillus reuteri that is structurally but not functionally related to naturally occurring tetramic acids. It is bacteriostatic or bactericidal to gram-positive bacteria based on its activity as a proton-ionophore, and a broad range of food-related spoilage organisms and pathogens is inhibited by reutericyclin. Gram-negative bacteria are resistant to reutericyclin because of the barrier properties of their outer membrane, and resistance of beer-spoiling lactobacilli towards hop bitter acids provides cross-protection to reutericyclin. Remarkably, reutericyclin-producing strains were shown to persist for a period of 10 years in an industrial sourdough fermentation, and reutericyclin was shown to be produced in concentrations active against competitors during growth of L. reuteri in sourdough. Based on the known properties of reutericyclin and L. reuteri, reutericyclin-producing strains may have applications in the biopreservation of foods. Furthermore, these strains were shown to colonize reconstituted lactobacilli-free mice at high levels. Therefore, they could serve as a suitable model system to evaluate a possible impact of antimicrobial compounds on the intestinal microflora of humans and animals.
    Applied Microbiology and Biotechnology 05/2004; 64(3):326-32. DOI:10.1007/s00253-003-1536-8 · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mode of action of reutericyclin was determined with fluorescent dyes that probed the permeability of the cytoplasmic membrane by large molecules, protons, and potassium. A comparison of reutericyclin activity with those of nisin, nigericin, and valinomycin demonstrated that reutericyclin does not form pores but selectively dissipates the transmembrane proton potential.
    Applied and Environmental Microbiology 03/2003; 69(2):1305-7. DOI:10.1128/AEM.69.2.1305-1307.2003 · 3.95 Impact Factor
Show more