Article

Immune Antibody Monitoring Predicts Outcome in Islet Transplantation

Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada.
Diabetes (Impact Factor: 8.47). 05/2013; 62(5):1377-8. DOI: 10.2337/db13-0019
Source: PubMed
0 Followers
 · 
56 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Registry data on patients with type 1 diabetes mellitus who undergo pancreatic islet transplantation indicate that only 8 percent are free of the need for insulin therapy at one year. Seven consecutive patients with type 1 diabetes and a history of severe hypoglycemia and metabolic instability underwent islet transplantation in conjunction with a glucocorticoid-free immunosuppressive regimen consisting of sirolimus, tacrolimus, and daclizumab. Islets were isolated by ductal perfusion with cold, purified collagenase, digested and purified in xenoprotein-free medium, and transplanted immediately by means of a percutaneous transhepatic portal embolization. All seven patients quickly attained sustained insulin independence after transplantation of a mean (+/-SD) islet mass of 11,547+/-1604 islet equivalents per kilogram of body weight (median follow-up, 11.9 months; range, 4.4 to 14.9). All recipients required islets from two donor pancreases, and one required a third transplant from two donors to achieve sustained insulin independence. The mean glycosylated hemoglobin values were normal after transplantation in all recipients. The mean amplitude of glycemic excursions (a measure of fluctuations in blood glucose concentrations) was significantly decreased after the attainment of insulin independence (from 198+/-32 mg per deciliter [11.1+/-1.8 mmol per liter] before transplantation to 119+/-37 mg per deciliter [6.7+/-2.1 mmol per liter] after the first transplantation and 51+/-30 mg per deciliter [2.8+/-1.7 mmol per liter] after the attainment of insulin independence; P<0.001). There were no further episodes of hypoglycemic coma. Complications were minor, and there were no significant increases in lipid concentrations during follow-up. Our observations in patients with type 1 diabetes indicate that islet transplantation can result in insulin independence with excellent metabolic control when glucocorticoid-free immunosuppression is combined with the infusion of an adequate islet mass.
    New England Journal of Medicine 08/2000; 343(4):230-8. DOI:10.1056/NEJM200007273430401 · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Islet cell transplantation can cure type 1 diabetes (T1D), but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function. Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG) induction and tacrolimus plus mycophenolate mofetil (MMF) maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively) and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively). Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome. In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular islet autoreactivity may be required. Monitoring cellular immune reactivity can be useful to identify factors influencing graft survival and to assess efficacy of immunosuppression. Clinicaltrials.gov NCT00623610.
    PLoS ONE 02/2008; 3(6):e2435. DOI:10.1371/journal.pone.0002435 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Islet transplantation can restore endogenous beta-cell function to subjects with type 1 diabetes. Sixty-five patients received an islet transplant in Edmonton as of 1 November 2004. Their mean age was 42.9 +/- 1.2 years, their mean duration of diabetes was 27.1 +/- 1.3 years, and 57% were women. The main indication was problematic hypoglycemia. Forty-four patients completed the islet transplant as defined by insulin independence, and three further patients received >16,000 islet equivalents (IE)/kg but remained on insulin and are deemed complete. Those who became insulin independent received a total of 799,912 +/- 30,220 IE (11,910 +/- 469 IE/kg). Five subjects became insulin independent after one transplant. Fifty-two patients had two transplants, and 11 subjects had three transplants. In the completed patients, 5-year follow-up reveals that the majority ( approximately 80%) have C-peptide present post-islet transplant, but only a minority ( approximately 10%) maintain insulin independence. The median duration of insulin independence was 15 months (interquartile range 6.2-25.5). The HbA(1c) (A1C) level was well controlled in those off insulin (6.4% [6.1-6.7]) and in those back on insulin but C-peptide positive (6.7% [5.9-7.5]) and higher in those who lost all graft function (9.0% [6.7-9.3]) (P < 0.05). Those who resumed insulin therapy did not appear more insulin resistant compared with those off insulin and required half their pretransplant daily dose of insulin but had a lower increment of C-peptide to a standard meal challenge (0.44 +/- 0.06 vs. 0.76 +/- 0.06 nmol/l, P < 0.001). The Hypoglycemic score and lability index both improved significantly posttransplant. In the 128 procedures performed, bleeding occurred in 15 and branch portal vein thrombosis in 5 subjects. Complications of immunosuppressive therapy included mouth ulcers, diarrhea, anemia, and ovarian cysts. Of the 47 completed patients, 4 required retinal laser photocoagulation or vitrectomy and 5 patients with microalbuminuria developed macroproteinuria. The need for multiple antihypertensive medications increased from 6% pretransplant to 42% posttransplant, while the use of statin therapy increased from 23 to 83% posttransplant. There was no change in the neurothesiometer scores pre- versus posttransplant. In conclusion, islet transplantation can relieve glucose instability and problems with hypoglycemia. C-peptide secretion was maintained in the majority of subjects for up to 5 years, although most reverted to using some insulin. The results, though promising, still point to the need for further progress in the availability of transplantable islets, improving islet engraftment, preserving islet function, and reducing toxic immunosuppression.
    Diabetes 07/2005; 54(7):2060-9. DOI:10.2337/diabetes.54.7.2060 · 8.47 Impact Factor

Preview (2 Sources)

Download
2 Downloads
Available from