Article

A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney.

Department of Molecular and Cellular Biology and Harvard Stem Cell Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
Development (Impact Factor: 6.27). 02/2009; 136(1):161-71. DOI: 10.1242/dev.022087
Source: PubMed

ABSTRACT The mammalian kidney is organized into a cortex where primary filtration occurs, and a medullary region composed of elongated tubular epithelia where urine is concentrated. We show that the cortico-medullary axis of kidney organization and function is regulated by Wnt7b signaling. The future collecting duct network specifically expresses Wnt7b. In the absence of Wnt7b, cortical epithelial development is normal but the medullary zone fails to form and urine fails to be concentrated normally. The analysis of cell division planes in the collecting duct epithelium of the emerging medullary zone indicates a bias along the longitudinal axis of the epithelium. By contrast, in Wnt7b mutants, cell division planes in this population are biased along the radial axis, suggesting that Wnt7b-mediated regulation of the cell cleavage plane contributes to the establishment of a cortico-medullary axis. The removal of beta-catenin from the underlying Wnt-responsive interstitium phenocopies the medullary deficiency of Wnt7b mutants, suggesting a paracrine role for Wnt7b action through the canonical Wnt pathway. Wnt7b signaling is also essential for the coordinated growth of the loop of Henle, a medullary extension of the nephron that elongates in parallel to the collecting duct epithelium. These findings demonstrate that Wnt7b is a key regulator of the tissue architecture that establishes a functional physiologically active mammalian kidney.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oviduct is an important organ in reproduction where fertilization occurs, and through which the fertilized eggs are carried to the uterus in mammals. This organ is highly polarized, where the epithelium forms longitudinal folds along the ovary-uterus axis, and the epithelial multicilia beat towards the uterus to transport the ovulated ova. Here, we analyzed the postnatal development of mouse oviduct and report that multilevel polarities of the oviduct are regulated by a planar cell polarity (PCP) gene, Celsr1. In the epithelium, Celsr1 is concentrated in the specific cellular boundaries perpendicular to the ovary-uterus axis from postnatal day 2. We found a new feature of cellular polarity in the oviduct - the apical surface of epithelial cells is elongated along the ovary-uterus axis. In Celsr1-deficient mice, the ciliary motion is not orchestrated along the ovary-uterus axis and the transport ability of beating cilia is impaired. Epithelial cells show less elongation and randomized orientation, and epithelial folds show randomized directionality and ectopic branches in the mutant. Our mosaic analysis suggests that the geometry of epithelial cells is primarily regulated by Celsr1 and as a consequence the epithelial folds are aligned. Taken together, we reveal the characteristics of the multilevel polarity formation processes in the mouse oviduct epithelium and suggest a novel function of the PCP pathway for proper tissue morphogenesis. © 2014. Published by The Company of Biologists Ltd.
    Development 12/2014; 141(23):4558-68. DOI:10.1242/dev.115659 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian kidney is a complex organ consisting of multiple cell types. We previously showed that the Six2-expressing cap mesenchyme is a multipotent self-renewing progenitor population for the main body of the nephron, the basic functional unit of the kidney. However, the cellular mechanisms establishing stromal tissues are less clear. We demonstrate that the Foxd1-expressing cortical stroma represents a distinct multipotent self-renewing progenitor population that gives rise to stromal tissues of the interstitium, mesangium, and pericytes throughout kidney organogenesis. Fate map analysis of Foxd1-expressing cells demonstrates that a small subset of these cells contributes to Six2-expressing cells at the early stage of kidney outgrowth. Thereafter, there appears to be a strict nephron and stromal lineage boundary derived from Six2-expressing and Foxd1-expressing cell types, respectively. Taken together, our observations suggest that distinct multipotent self-renewing progenitor populations coordinate cellular differentiation of the nephron epithelium and renal stroma during mammalian kidney organogenesis.
    10/2014; 3(4). DOI:10.1016/j.stemcr.2014.08.008