Article

Lateral ventricle morphology analysis via mean latitude axis

Department of Psychiatry, University of North Carolina at Chapel Hill.
Proceedings - Society of Photo-Optical Instrumentation Engineers 03/2013; 8672. DOI: 10.1117/12.2006846
Source: PubMed

ABSTRACT Statistical shape analysis has emerged as an insightful method for evaluating brain structures in neuroimaging studies, however most shape frameworks are surface based and thus directly depend on the quality of surface alignment. In contrast, medial descriptions employ thickness information as alignment-independent shape metric. We propose a joint framework that computes local medial thickness information via a mean latitude axis from the well-known spherical harmonic (SPHARM-PDM) shape framework. In this work, we applied SPHARM derived medial representations to the morphological analysis of lateral ventricles in neonates. Mild ventriculomegaly (MVM) subjects are compared to healthy controls to highlight the potential of the methodology. Lateral ventricles were obtained from MRI scans of neonates (9-144 days of age) from 30 MVM subjects as well as age- and sex-matched normal controls (60 total). SPHARM-PDM shape analysis was extended to compute a mean latitude axis directly from the spherical parameterization. Local thickness and area was straightforwardly determined. MVM and healthy controls were compared using local MANOVA and compared with the traditional SPHARM-PDM analysis. Both surface and mean latitude axis findings differentiate successfully MVM and healthy lateral ventricle morphology. Lateral ventricles in MVM neonates show enlarged shapes in tail and head. Mean latitude axis is able to find significant differences all along the lateral ventricle shape, demonstrating that local thickness analysis provides significant insight over traditional SPHARM-PDM. This study is the first to precisely quantify 3D lateral ventricle morphology in MVM neonates using shape analysis.

Download full-text

Full-text

Available from: Martin Styner, Jul 30, 2015
1 Follower
 · 
188 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improving the shape statistics of medical image objects by generating correspondence of interior skeletal points. Synthetic objects and real world lateral ventricles segmented from MR images. Each object's interior is modeled by a skeletal representation called the s-rep, which is a quadrilaterally sampled, folded 2-sided skeletal sheet with spoke vectors proceeding from the sheet to the boundary. The skeleton is divided into three parts: up-side, down-side and fold-curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along their skeletal parts in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and sampling regularity. The spokes' geometric properties are skeletal position, spoke length and spoke direction. The properties used to measure the regularity are the volumetric subregions bounded by the spokes, their quadrilateral sub-area and edge lengths on the skeletal surface and on the boundary. Evaluation on synthetic and real world lateral ventricles demonstrated improvement in the performance of statistics using the resulting probability distributions, as compared to methods based on boundary models. The evaluation measures used were generalization, specificity, and compactness. S-rep models with the proposed improved correspondence provide significantly enhanced statistics as compared to standard boundary models.
    Proceedings of SPIE - The International Society for Optical Engineering 9413. DOI:10.1117/12.2081245 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometry (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E∈4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our work provides a new MRI analysis tool that may help presymptomatic AD research.
    NeuroImage 04/2013; 78:111-134. DOI:10.1016/j.neuroimage.2013.04.018 · 6.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The survey outlines and compares popular computational techniques for quantitative description of shapes of major structural parts of the human brain, including medial axis and skeletal analysis, geodesic distances, Procrustes analysis, deformable models, spherical harmonics, and deformation morphometry, as well as other less widely used techniques. Their advantages, drawbacks, and emerging trends, as well as results of applications, in particular, for computer-aided diagnostics, are discussed.
    IEEE Journal of Biomedical and Health Informatics 07/2014; 18(4):1337-1354. DOI:10.1109/JBHI.2014.2298139 · 1.98 Impact Factor
Show more