Article

Parental depression, maternal antidepressant use during pregnancy, and risk of autism spectrum disorders: population based case-control study.

Centre for Mental Health, Addiction and Suicide Research, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK.
BMJ (online) (Impact Factor: 16.38). 04/2013; 346:f2059. DOI: 10.1136/bmj.f2059
Source: PubMed

ABSTRACT To study the association between parental depression and maternal antidepressant use during pregnancy with autism spectrum disorders in offspring.
Population based nested case-control study.
Stockholm County, Sweden, 2001-07.
4429 cases of autism spectrum disorder (1828 with and 2601 without intellectual disability) and 43 277 age and sex matched controls in the full sample (1679 cases of autism spectrum disorder and 16 845 controls with data on maternal antidepressant use nested within a cohort (n=589 114) of young people aged 0-17 years.
A diagnosis of autism spectrum disorder, with or without intellectual disability. EXPOSURES: Parental depression and other characteristics prospectively recorded in administrative registers before the birth of the child. Maternal antidepressant use, recorded at the first antenatal interview, was available for children born from 1995 onwards.
A history of maternal (adjusted odds ratio 1.49, 95% confidence interval 1.08 to 2.08) but not paternal depression was associated with an increased risk of autism spectrum disorders in offspring. In the subsample with available data on drugs, this association was confined to women reporting antidepressant use during pregnancy (3.34, 1.50 to 7.47, P=0.003), irrespective of whether selective serotonin reuptake inhibitors (SSRIs) or non-selective monoamine reuptake inhibitors were reported. All associations were higher in cases of autism without intellectual disability, there being no evidence of an increased risk of autism with intellectual disability. Assuming an unconfounded, causal association, antidepressant use during pregnancy explained 0.6% of the cases of autism spectrum disorder.
In utero exposure to both SSRIs and non-selective monoamine reuptake inhibitors (tricyclic antidepressants) was associated with an increased risk of autism spectrum disorders, particularly without intellectual disability. Whether this association is causal or reflects the risk of autism with severe depression during pregnancy requires further research. However, assuming causality, antidepressant use during pregnancy is unlikely to have contributed significantly towards the dramatic increase in observed prevalence of autism spectrum disorders as it explained less than 1% of cases.

Full-text

Available from: Brian K Lee, Jun 09, 2015
0 Followers
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selective serotonin reuptake inhibitor (SSRI) antidepressants are the mainstay treatment for the 10–20% of pregnant and postpartum women who suffer major depression, but the effects of SSRIs on their children’s developing brain and later emotional health are poorly understood. SSRI use during pregnancy can elicit antidepressant withdrawal in newborns and increase toddlers’ anxiety and social avoidance. In rodents, perinatal SSRI exposure increases adult depression- and anxiety-like behavior, although certain individuals are more vulnerable to these effects than others. Our study establishes a rodent model of individual differences in susceptibility to perinatal SSRI exposure, utilizing selectively bred Low Responder (bLR) and High Responder (bHR) rats that were previously bred for high versus low behavioral response to novelty. Pregnant bHR/bLR females were chronically treated with the SSRI paroxetine (10 mg/kg/day p.o.) to examine its effects on offspring’s emotional behavior and gene expression in the developing brain. Paroxetine treatment had minimal effect on bHR/bLR dams’ pregnancy outcomes or maternal behavior. We found that bLR offspring, naturally prone to an inhibited/anxious temperament, were susceptible to behavioral abnormalities associated with perinatal SSRI exposure (which exacerbated their Forced Swim Test immobility), while high risk-taking bHR offspring were resistant. Microarray studies revealed robust perinatal SSRI-induced gene expression changes in the developing bLR hippocampus and amygdala (postnatal days 7–21), including transcripts involved in neurogenesis, synaptic vesicle components, and energy metabolism. These results highlight the bLR/bHR model as a useful tool to explore the neurobiology of individual differences in susceptibility to perinatal SSRI exposure.
    Neuroscience 11/2014; 284. DOI:10.1016/j.neuroscience.2014.10.044 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies suggested that risk for Autism Spectrum Disorder (ASD) may be increased in children exposed to antidepressants during the prenatal period. The disease specificity of this risk has not been addressed and the possibility of confounding has not been excluded. Children with ASD or attention-deficit hyperactivity disorder (ADHD) delivered in a large New England health-care system were identified from electronic health records (EHR), and each diagnostic group was matched 1:3 with children without ASD or ADHD. All children were linked with maternal health data using birth certificates and EHRs to determine prenatal medication exposures. Multiple logistic regression was used to examine association between prenatal antidepressant exposures and ASD or ADHD risk. A total of 1377 children diagnosed with ASD and 2243 with ADHD were matched with healthy controls. In models adjusted for sociodemographic features, antidepressant exposure prior to and during pregnancy was associated with ASD risk, but risk associated with exposure during pregnancy was no longer significant after controlling for maternal major depression (odds ratio (OR) 1.10 (0.70-1.70)). Conversely, antidepressant exposure during but not prior to pregnancy was associated with ADHD risk, even after adjustment for maternal depression (OR 1.81 (1.22-2.70)). These results suggest that the risk of autism observed with prenatal antidepressant exposure is likely confounded by severity of maternal illness, but further indicate that such exposure may still be associated with ADHD risk. This risk, modest in absolute terms, may still be a result of residual confounding and must be balanced against the substantial consequences of untreated maternal depression.Molecular Psychiatry advance online publication, 26 August 2014; doi:10.1038/mp.2014.90.
    Molecular Psychiatry 08/2014; 20(6). DOI:10.1038/mp.2014.90 · 15.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability-windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review a serotonin-sensitive period that impacts sensory system development, a serotonin-sensitive period that impacts cognition, anxiety and depression-related behaviors, and a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.Neuropsychopharmacology Reviews accepted article preview online, 02 September 2014. doi:10.1038/npp.2014.231.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 09/2014; DOI:10.1038/npp.2014.231 · 7.83 Impact Factor