Article

White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging.

Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA.
NeuroImage (Impact Factor: 6.13). 04/2013; DOI: 10.1016/j.neuroimage.2013.04.028
Source: PubMed

ABSTRACT Children with chromosome 22q11.2 Deletion Syndrome (22q11.2DS), Fragile X Syndrome (FXS), or Turner Syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders.

1 Bookmark
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk.
    Frontiers in Behavioral Neuroscience 11/2014; 8:393. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization - or asymmetry - and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 11/2013; · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study utilized diffusion tensor imaging (DTI) to analyze white matter tractography in the anterior limb of the internal capsule (ALIC), fornix, and uncinate fasciculus (UF) of individuals with 22q11.2 deletion syndrome and controls. Aberrations in these tracts have been previously associated with schizophrenia. With up to 25% of individuals with 22q11.2DS developing schizophrenia in adulthood, we hypothesized reduction in structural integrity of these tracts, including an association with prodromal symptoms of psychosis. We further predicted an association between allelic variation in a functional polymorphism of the Nogo-66 receptor gene and 22q11.2DS white matter integrity. Tractography was conducted using fiber assignment by streamline tracking algorithm in DTI Studio. Subjects were genotyped for the rs701428 SNP of the Nogo-66 receptor gene, and assessed for presence of prodromal symptoms. We found significant group differences between 22q11.2DS and controls in DTI metrics for all three tracts. DTI metrics of ALIC and UF were associated with prodromal symptoms in 22q11.2DS. Further, ALIC DTI metrics were associated with allelic variation of the rs701428 SNP of the Nogo-66 receptor gene in 22q11.2DS. Alterations in DTI metrics suggest white matter microstructural anomalies of the ALIC, fornix, and UF in 22q11.2DS. Structural differences in ALIC appear to be associated with the Nogo-66 receptor gene, which has been linked to myelin-mediated axonal growth inhibition. Moreover, the association between psychosis symptoms and ALIC and UF metrics suggests that the Nogo-66 receptor gene may represent a susceptibility gene for psychosis through its disruption of white matter microstructure and myelin-associated axonal growth.
    Schizophrenia Research 12/2013; · 4.43 Impact Factor

Full-text

Download
117 Downloads
Available from
Jun 5, 2014